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Motivation & Contribution The Proposed VILLA Framework
* Multimodal pre-training, such as ViLBERT, LXMERT
and UNITER, has made tremendous progress in Vision-
and-Language (V+L) research 4 , . )
, , , , Adversarial Pre-training.
* However, aggressive finetuning of pre-trained models § :> O Masked Language Modeling (MLM)
often falls into the overfitting trap = O Image-Text Matching (ITM) O ...
* Adversarial training has shown great potential in 1 -
improving the generalization ability of BERT for i
language understanding tasks s /Adversarial Finetuning: -
* Our Contribution: the first known effort to study B Ox.QA | ?VC'F: ONLVR2
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@ Adversarial pre-training and finetuning © Perturbations in the embedding space

Experimental Results

© Enhanced adversarial training algorithm

Algorithm 1 “Free” Multi-modal Adversarial Training used in VILLA.

Require: Training samples D = {(Zjng, T1at, Y) }, perturbation bound e, learning rate 7, ascent

steps K, ascent step size «
1: Initialize 6
2: forepoch=1... N, do
3 for minibatch B C X do

4: dg \/LN—aU(—e,e), go <0

5 fort=1... K do

6: Accumulate gradient of parameters 6 given 0;g,t—1 and Oyt ¢ —1

7: 9: %9 4+ %E(mimg,mmt,y)eB[VG(ﬁstd(H) 0 Rat(e) T Rkl(e))]

8: Update the perturbation d;,,, and 4, via gradient ascend

9: Y = Jo(®ira: Thak)
10: gz-mg — véimg [L(fe (wimg+5’img7 mtazt)a y)+Lkl (fe(wimg +6imga mtmt)a 37)]
11: Oimg,t < 16,0l p<e(Fimgt—1 + @ Gimg/|Gimgll F)
12 9irt — V(Stwt [L(fO(wimga Tzt + 5tmt)7 y) e Lkl(f@(wimga Tzt + 5tmt)7 g)]
13: Otrt,t < H||6tmt||pge(5t:ct,t—1 + @ gt/ |Gtwtll F)
14: end for
15: 0<—0—71g,
16: end for
17: end for

Code is available at
https://github.com/zhegan27/VILLA

O New state of the art on a wide range of V+L tasks (see paper for details)
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O Both adversarial pre-training (VILLA-pre) and finetuning (VILLA-fine) contribute to
performance boost
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O Adversarial training on image or text modality alone is already effective

O VILLA captures richer visual coreference and visual relation knowledge than UNITER

O VILLA learns more accurate and sharper attention maps than UNITER

O VILLA is more robust to paraphrases than UNITER
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O Adversarial training serves as

effective regularizer
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O VILLA can be readily extended to other
pre-trained V+L models, such as LXMERT


https://github.com/zhegan27/VILLA

