

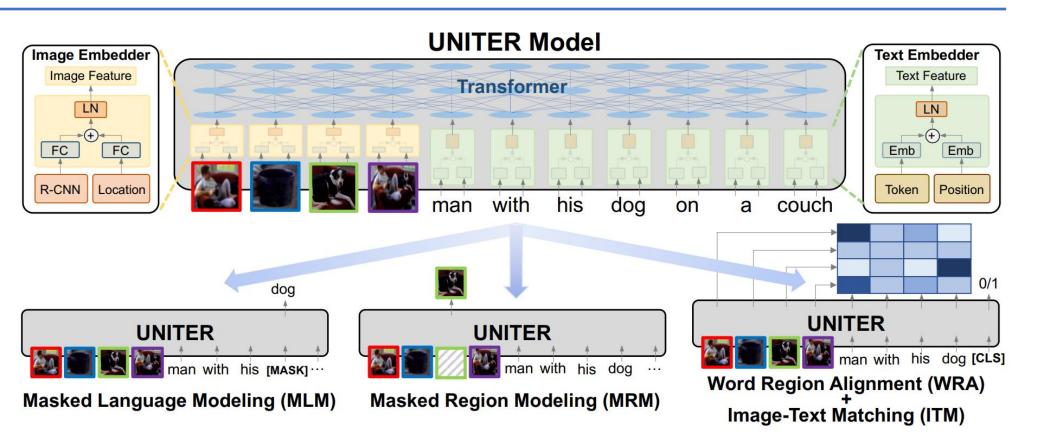
Large-Scale Adversarial Training for **Vision-and-Language Representation Learning**

Zhe Gan¹, Yen-Chun Chen¹, Linjie Li¹, Chen Zhu², Yu Cheng¹, Jingjing Liu¹ ¹Microsoft Dynamics 365 AI Research, ²University of Maryland, College Park

Motivation & Contribution

- *Multimodal pre-training*, such as ViLBERT, LXMERT and UNITER, has made tremendous progress in Visionand-Language (V+L) research
- However, aggressive finetuning of pre-trained models often falls into the *overfitting trap*
- Adversarial training has shown great potential in improving the generalization ability of BERT for language understanding tasks
- *Our Contribution*: the first known effort to study large-scale adversarial training for V+L tasks

Algorithm and Backbone (UNITER)



Algorithm 1 "Free" Multi-modal Adversarial Training used in VILLA.

Require: Training samples $\mathcal{D} = \{(x_{img}, x_{txt}, y)\}$, perturbation bound ϵ , learning rate τ , ascent steps K, ascent step size α

- 1: Initialize θ 2: for epoch = $1 \dots N_{ep}$ do for minibatch $B \subset X$ do
- $\boldsymbol{\delta}_0 \leftarrow \frac{1}{\sqrt{N_{\boldsymbol{\delta}}}} U(-\epsilon,\epsilon), \ \boldsymbol{g}_0 \leftarrow 0$
- for t = 1 ... K do
- Accumulate gradient of parameters θ given $\delta_{img,t-1}$ and $\delta_{txt,t-1}$
 - $\begin{array}{l} \boldsymbol{g}_t \leftarrow \boldsymbol{g}_{t-1} + \frac{1}{K} \mathbb{E}_{(\boldsymbol{x}_{img}, \boldsymbol{x}_{txt}, \boldsymbol{y}) \in B} [\nabla_{\boldsymbol{\theta}} (\mathcal{L}_{std}(\boldsymbol{\theta}) + \mathcal{R}_{at}(\boldsymbol{\theta}) + \mathcal{R}_{kl}(\boldsymbol{\theta}))] \\ \text{Update the perturbation } \boldsymbol{\delta}_{img} \text{ and } \boldsymbol{\delta}_{txt} \text{ via gradient ascend} \end{array}$
 - $\tilde{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_{img}, \boldsymbol{x}_{txt})$
 - $\boldsymbol{g}_{img} \leftarrow \nabla_{\boldsymbol{\delta}_{img}} \left[L(f_{\boldsymbol{\theta}}(\boldsymbol{x}_{img} + \boldsymbol{\delta}_{img}, \boldsymbol{x}_{txt}), \boldsymbol{y}) + L_{kl}(f_{\boldsymbol{\theta}}(\boldsymbol{x}_{img} + \boldsymbol{\delta}_{img}, \boldsymbol{x}_{txt}), \tilde{\boldsymbol{y}}) \right]$ $\boldsymbol{\delta}_{img,t} \leftarrow \Pi_{\|\boldsymbol{\delta}_{img}\|_{F} \leq \epsilon} (\boldsymbol{\delta}_{img,t-1} + \alpha \cdot \boldsymbol{g}_{img} / \|\boldsymbol{g}_{img}\|_{F})$
 - $\boldsymbol{g}_{txt} \leftarrow \nabla_{\boldsymbol{\delta}_{txt}} \left[L(f_{\boldsymbol{\theta}}(\boldsymbol{x}_{img}, \boldsymbol{x}_{txt} + \boldsymbol{\delta}_{txt}), \boldsymbol{y}) + L_{kl}(f_{\boldsymbol{\theta}}(\boldsymbol{x}_{img}, \boldsymbol{x}_{txt} + \boldsymbol{\delta}_{txt}), \tilde{\boldsymbol{y}}) \right]$ $\boldsymbol{\delta}_{txt,t} \leftarrow \Pi_{\|\boldsymbol{\delta}_{txt}\|_{F} \leq \epsilon} (\boldsymbol{\delta}_{txt,t-1} + \alpha \cdot \boldsymbol{g}_{txt} / \|\boldsymbol{g}_{txt}\|_{F})$
- 13: end for 14:
- $\boldsymbol{\theta} \leftarrow$ 15: $-\tau \boldsymbol{g}_{K}$ end for

12:

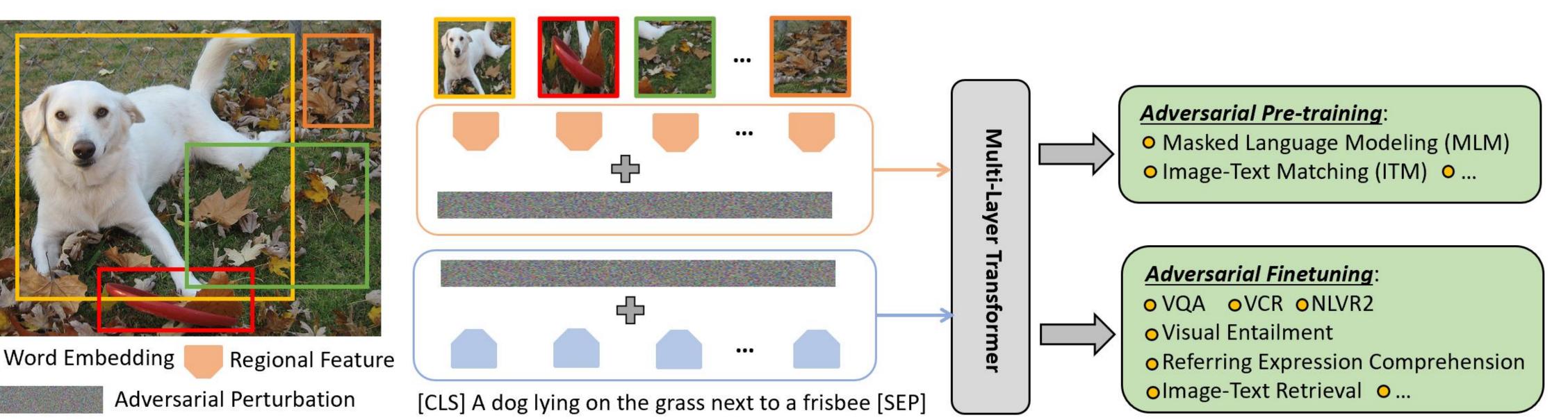
Code is available at https://github.com/zhegan27/VILLA

U

68 ·

66

The Proposed VILLA Framework

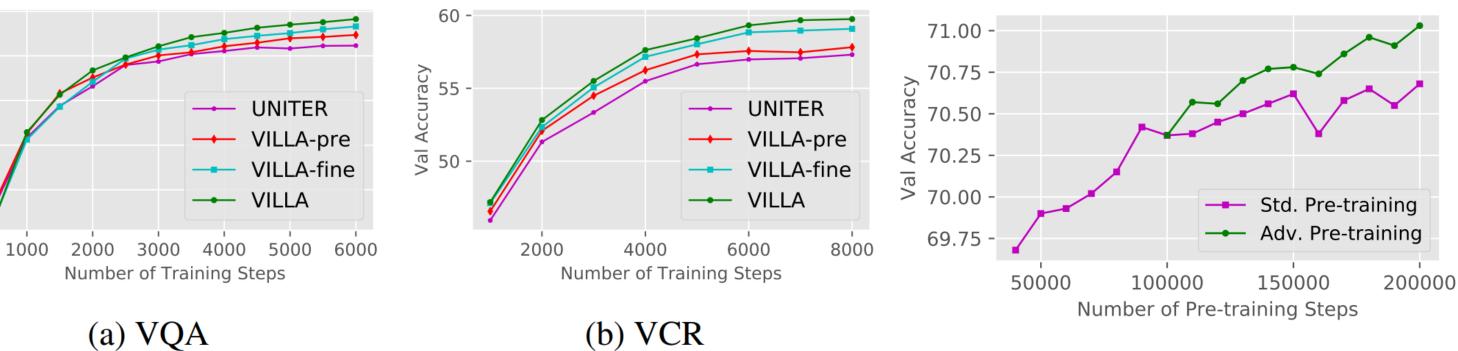


• Adversarial pre-training and finetuning • Perturbations in the embedding space **Experimental Results**

• New state of the art on a wide range of V+L tasks (see paper for details)

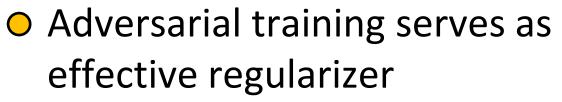
Task	VQA	VCR	NLVR2	VE	RefCOCOg	RefCOCO+	Flickr30k IR	Flickr30k TR	VQA-Rep.
INITER	74.02	62.8	79.98	79.38	75.77	66.70	75.56	87.30	64.56
VILLA	74.87	65.7	81.47	80.02	76.71	66.84	76.26	87.90	65.35

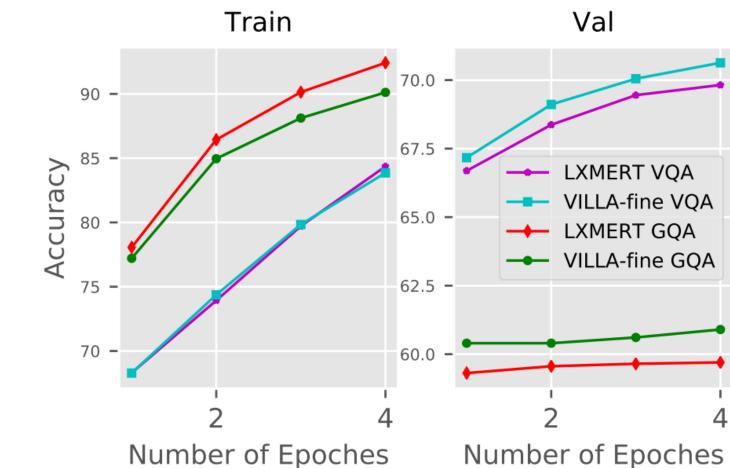
• Both adversarial pre-training (VILLA-pre) and finetuning (VILLA-fine) contribute to performance boost



• Adversarial training on image or text modality alone is already effective • VILLA captures richer visual coreference and visual relation knowledge than UNITER • VILLA learns more accurate and sharper attention maps than UNITER • VILLA is more robust to paraphrases than UNITER

• Enhanced adversarial training algorithm





• VILLA can be readily extended to other pre-trained V+L models, such as LXMERT