Adversarial Feature Matching for Text Generation
Yizhe Zhang1,2, Zhe Gan1, Kai Fan2, Zhi Chen1, Ricardo Henao1, Lawrence Carin1

Department of Electronic and Computer Engineering1, Duke University, Durham, NC, 27708
Department of Statistical Science2, Duke University, Durham, NC, 27708

Motivation & Contribution
1) Estimating a distribution over sentences from a corpus, then use it to sample realistic-looking text.
2) Ameliorating mode-collapsing issue associated with standard GAN training.
3) Discretization approximations for text modeling.

Introductions
Generative adversarial network (GAN) aims to obtain the equilibrium of the following optimization objective:

\[\mathcal{L}_{GAN} = \mathbb{E}_{x \sim p_r} \log D(x) + \mathbb{E}_{z \sim p_z} \log[1 - D(G(z))] \]

Minimizing the Jenson-Shannon Divergence (JSD) between the real data distribution and the synthetic data distribution.

TextGAN objective
We adopt a feature matching approach instead of vanilla GAN objective. Specifically, we consider the objective

\[\mathcal{L}_D = \mathcal{L}_{GAN} - \lambda_1 \mathcal{L}_{recon} + \lambda_2 \mathcal{L}_{MMD} \]

\[\mathcal{L}_G = \mathcal{L}_{MMD} \]

\[\mathcal{L}_{recon} = \mathbb{E}_{z \sim p_z} \log[1 - D(G(z))] \]

Discretization approximation
1) Instead of using original GAN loss, we consider a moment matching loss over CNN feature layer using maximum mean discrepancy (MMD).
2) The MMD measures the mean squared difference of two sets of samples over RKHS:

\[\mathcal{L}_{MMD} = \| \mathbb{E}_{x \sim p_r} \phi(x) - \mathbb{E}_{y \sim p_g} \phi(y) \|^2_2 \]

\[= \mathbb{E}_{x \sim p_r} \mathbb{E}_{y \sim p_g} [k(x, y)] + \mathbb{E}_{x \sim p_r} \mathbb{E}_{y \sim p_g} [k(y, x)] - 2 \mathbb{E}_{x \sim p_r} \mathbb{E}_{y \sim p_g} [k(x, y)] \]

With a Gaussian kernel \(k(x, y) = \exp(-\frac{|x-y|^2}{2\sigma^2}) \), the minimizing the MMD objective is can be visualized as matching all order of moments of two empirical distributions.

Results: empirical evaluation
Table: Sentences generated by textGAN.

![figure: LSTM generator (left) and CNN discriminator (right)]

MMD objective
- Instead of using original GAN loss, we consider a moment matching loss over \textit{CNN feature layer} using maximum mean discrepancy (MMD).
- The MMD measures the mean squared difference of two sets of samples over RKHS:

\[\mathcal{L}_{MMD} = \| \mathbb{E}_{x \sim p_r} \phi(x) - \mathbb{E}_{y \sim p_g} \phi(y) \|^2_2 \]

\[= \mathbb{E}_{x \sim p_r} \mathbb{E}_{y \sim p_g} [k(x, y)] + \mathbb{E}_{x \sim p_r} \mathbb{E}_{y \sim p_g} [k(y, x)] - 2 \mathbb{E}_{x \sim p_r} \mathbb{E}_{y \sim p_g} [k(x, y)] \]

With a Gaussian kernel \(k(x, y) = \exp(-\frac{|x-y|^2}{2\sigma^2}) \), the minimizing the MMD objective is can be visualized as matching all order of moments of two empirical distributions.

Discretization approximation
1) Score-function-based approaches, such as the REINFORCE algorithm, has very large variance of the gradient estimation.
2) We consider a Gumbel-softmax approach to approximate argmax operation.

\[y_{t-1} = \text{softmax}(Vh_{t-1} \odot L) \]

where \(\odot \) represents the element-wise product. Note that when \(L \to \infty \), this approximation approaches argmax operation.

Alternative objective
- Problems: a minibatch (256) of data point is not densely sampled in feature space with high dimension (900).
- Alternative models:
 - Mapping feature space to lower dimension
 - Use accumulated batches, however kernel-based method is not available anymore. Instead we use Jensen-Shannon divergence:

\[L_G = \mathbb{E}_{(\Sigma, \mu) \sim \pi} [\mu, (\mu_0 - \mu)] (\Sigma^{-1} (\mu - \mu_0)) \]

\(\Sigma \) and \(\mu \) are covariance and mean for the discriminative feature vector.

Quantitative comparison
Table: Quantitative results using BLEU-2,3,4 and KIDE.

![figure: Moment matching comparison. Left: expectations of latent features from real vs. synthetic data. Right: elements of \(\Sigma \), \(\mu \) for real and synthetic data, respectively.]

Conclusion
1) We introduced a novel approach for text generation using adversarial training.
2) We discussed several techniques to specify and train such a model.
3) We demonstrated that the proposed model delivers superior performance compared to related approaches.