Stochastic Gradient Monomial Gamma Sampler

Presenter: Yizhe Zhang

Joint with: Changyou Chen, Zhe Gan, Ricardo Henao, Lawrence Carin

Duke University

August 9, 2017
Sampling from $f(\theta) \propto \exp(-U(\theta, X))$

Bayesian model averaging; uncertainty estimation;

SG-MCMC replaces $U(\theta, X)$ with an unbiased stochastic likelihood, $	ilde{U}(\theta, x_\tau)$, evaluated from a subset of data, x_τ

$$
\tilde{U}(\theta) = -\frac{N}{N'} \sum_{i=1}^{N'} \log p(x_{\tau_i}|\theta) - \log p(\theta), \quad (1)
$$

where $\{\tau_1, \cdots, \tau_{N'}\}$ are random subsets.
Driven by a continuous-time Markov stochastic process.

\[d\Gamma = V(\Gamma)dt + D(\Gamma)dW , \]

where \(\Gamma \) denotes the parameters of the augmented system, e.g., \(p \) and \(\theta \), \(V(\cdot) \) and \(D(\cdot) \) are referred as drift and diffusion vectors, respectively, and \(W \) denotes a standard Wiener process.

To have a stationary distribution \(p(\Gamma) \), Fokker-Planck equation needs to be hold.

\[\nabla_\Gamma \cdot p(\Gamma)V(\Gamma) = \nabla_\Gamma \nabla_\Gamma^T : [p(\Gamma)D(\Gamma)] \]
SGHMC (stochastic gradient Hamiltonian Monte Carlo) [Chen et. al., 2014] use stochastic gradient $\partial_\theta \tilde{U}(\theta)$, and introduce a friction term $B(\theta)$ to account for stochastic noise. The SDE is given as

$$d\theta = \partial_p K(p) dt$$

$$dp = -\partial_\theta \tilde{U}(\theta) dt - B(\theta) \partial_p K(p) dt + \mathcal{N}(0, 2B(\theta) dt).$$

where $K(p)$ is the kinetics, $K(p) = p^T p / m$.
SGNHT (stochastic gradient Nosé-Hoover thermostat) [Ding et. al, 2015] generalize the SGHMC to use thermostat for estimating the stochastic noise.

\[d\theta = \partial_p K(p) dt \] \hspace{1cm} (5)

\[dp = -\partial_\theta \tilde{U}(\theta) dt - \xi \partial_p K(p) dt + \mathcal{N}(0, 2B(\theta) dt) \] \hspace{1cm} (6)

\[d\xi = (p^T p - 1) dt. \] \hspace{1cm} (7)
Improving over SGMCMC

We propose three techniques for improving efficiency of SGMCMC.

- Use *generalized kinetics* which delivers superior mixing rate.
- Use *additional dynamic* which helps convergence, and has better ergodic properties.
- Use *stochastic resampling* which helps convergence.
More efficient kinetics

- We consider *monomial Gamma* (MG) [Zhang et. al. 2016] kinetics $K(p) = |p|^{1/a}$, where $a \geq 1$.
- 1) Better stationary mixing
- 2) Better exploring multimodal distribution.
- However, directly applying such $K(p)$ will not satisfy FP equation.
- We use a softened version of MG kinetics.

![Graph showing kinetic function values for different cases](image)

(Duke university) August 9, 2017
Hamiltonian system with a generalized form of kinetics and thermostat variable (stochastic noise).

\[H = K(p) + U(\theta) + F(\xi), \]

Consider SDE of SGNHT under this generalized form

\[d\theta = \nabla K(p)dt \]
\[dp = -\left(\sigma_p + \gamma \nabla F(\xi) \right) \odot \nabla K(p)dt \]
\[\quad - \nabla U(\theta)dt + \sqrt{2\sigma_p}dW, \]
\[d\xi = \gamma \left[\nabla K_c(p) \odot \nabla K(p) - \nabla^2 K(p) \right] dt. \]

With **numerical integrator**, \(\nabla U(\theta_t) \) is large \(\rightarrow p_{t+1} \) is large.

For \(a > 1 \), \(\nabla K(p) \approx |p|^{1/a-1} \). \(p_{t+1} \) is large \(\rightarrow \nabla K(p) \) is small \(\rightarrow \theta \) won’t change.
We consider adding first-order dynamics to θ and ξ

\[
\begin{align*}
 d\theta &= \nabla K_c(p) dt - \sigma_\theta \nabla U(\theta) dt + \sqrt{2\sigma_\theta} dW \\
 dp &= - (\sigma_p + \gamma \nabla F(\xi)) \odot \nabla K_c(p) dt \\
 &\quad - \nabla U(\theta) dt + \sqrt{2\sigma_p} dW, \\
 d\xi &= \gamma \left[\nabla K_c(p) \odot \nabla K_c(p) - \nabla^2 K_c(p) \right] dt \\
 &\quad - \sigma_\xi \nabla F(\xi) dt + \sqrt{2\sigma_\xi} dW.
\end{align*}
\]

Fortunately, the first order Langevin directly compensate this with large updating signal $\nabla U(\theta_{t+1})$

On the other hand, when $\nabla U(\theta)$ is small, $\nabla K_c(p)$ would be large.

The proposed SDE also has better theoretic guarantee on the existence and convergence of bounded solutions for a particular differential equation.
Stochastic resampling

- Resample p and ξ from their marginal distribution $(\propto \exp[-K(p)]; \exp[-F(\xi)])$ with a fixed frequency.
- Move on a higher energy level is less efficient.
- Make the sampler to **immediately** move to a lower energy level.
- Converge to stationary distribution.

Figure: Stochastic resampling.
Theoretical properties

- Quantifying how fast the sample average, $\hat{\phi}_T$, converges to the true posterior average, $\bar{\phi} \triangleq \int \phi(\theta) \pi(\theta|X) d\theta$, for $\hat{\phi}_T \triangleq \frac{1}{T} \sum_{t=1}^{T} \phi(\theta_t)$, where T is number of iterations.

Theorem

For the proposed SGMGT and SGMGT-D algorithms, if a fixed stepsize h is used, we have:

- **Bias:** $\left| \mathbb{E} \hat{\phi}_T - \bar{\phi} \right| = O \left(1/(Th) + h \right)$,

- **MSE:** $\mathbb{E} \left(\hat{\phi} - \bar{\phi} \right)^2 = O \left(1/(Th) + h^2 \right)$.
Experiments overview

We evaluate our model on various tasks:

1. Toy task: multiple-well synthetic potential
2. Bayesian Logistic Regression
3. Latent Dirichlet Allocation
4. Discriminative RBM
5. Bayesian Recurrent Neural Network
Multiple-well Synthetic Potential

- Generate samples from a complex multimodal distribution.
- SGMGT-D: w/ 1st dynamics and resampling

Figure: Synthetic multimodal distribution. Left: empirical distributions for different methods. Right: traceplot for each method.
Bayesian Logistic Regression

Table: Average AUROC and median ESS. Dataset dimensionality is indicated in parenthesis after the name of each dataset.

<table>
<thead>
<tr>
<th>AUROC (D)</th>
<th>A (15)</th>
<th>G (25)</th>
<th>H (14)</th>
<th>P(8)</th>
<th>R (7)</th>
<th>C (87)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGNHT</td>
<td>0.89</td>
<td>0.75</td>
<td>0.90</td>
<td>0.86</td>
<td>0.95</td>
<td>0.65</td>
</tr>
<tr>
<td>SGMGT (a=1)</td>
<td>0.92</td>
<td>0.78</td>
<td>0.91</td>
<td>0.86</td>
<td>0.87</td>
<td>0.70</td>
</tr>
<tr>
<td>SGMGT-D (a=1)</td>
<td>0.95</td>
<td>0.86</td>
<td>0.95</td>
<td>0.93</td>
<td>0.98</td>
<td>0.73</td>
</tr>
<tr>
<td>SGMGT (a=2)</td>
<td>0.93</td>
<td>0.79</td>
<td>0.93</td>
<td>0.88</td>
<td>0.86</td>
<td>0.62</td>
</tr>
<tr>
<td>SGMGT-D (a=2)</td>
<td>0.95</td>
<td>0.90</td>
<td>0.95</td>
<td>0.90</td>
<td>0.97</td>
<td>0.69</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SGNHT</td>
<td>869</td>
<td>941</td>
<td>1911</td>
<td>2077</td>
<td>1761</td>
<td>1873</td>
</tr>
<tr>
<td>SGMGT-D (a=1)</td>
<td>3147</td>
<td>2131</td>
<td>2448</td>
<td>4244</td>
<td>1494</td>
<td>3605</td>
</tr>
<tr>
<td>SGMGT-D (a=2)</td>
<td>2700</td>
<td>1989</td>
<td>2768</td>
<td>3430</td>
<td>2265</td>
<td>2969</td>
</tr>
</tbody>
</table>
Figure: Experimental results for DRBM. Upper-left: testing accuracies for SGLD, SGNHT, SGMGT and SGMGT-D. Upper-right through lower-right: traceplots for SGLD, SGNHT and SGMGT-D with $a = 2$, respectively.
Table: Test negative log-likelihood results on polyphonic music datasets and test perplexities on PTB using RNN.

<table>
<thead>
<tr>
<th>Algorithms</th>
<th>Piano</th>
<th>Nott</th>
<th>Muse</th>
<th>JSB</th>
<th>PTB</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGLD</td>
<td>11.37</td>
<td>6.07</td>
<td>10.83</td>
<td>11.25</td>
<td>127.47</td>
</tr>
<tr>
<td>SGNHT</td>
<td>9.00</td>
<td>4.24</td>
<td>7.85</td>
<td>9.27</td>
<td>131.3</td>
</tr>
<tr>
<td>SGMGT (a=1)</td>
<td>7.90</td>
<td>4.35</td>
<td>8.42</td>
<td>8.67</td>
<td>120.6</td>
</tr>
<tr>
<td>SGMGT (a=2)</td>
<td>10.17</td>
<td>4.64</td>
<td>8.51</td>
<td>8.84</td>
<td>250.5</td>
</tr>
<tr>
<td>SGMGT-D (a=1)</td>
<td>7.51</td>
<td>3.33</td>
<td>7.11</td>
<td>8.46</td>
<td>113.8</td>
</tr>
<tr>
<td>SGMGT-D (a=2)</td>
<td>7.53</td>
<td>3.35</td>
<td>7.09</td>
<td>8.43</td>
<td>109.0</td>
</tr>
<tr>
<td>SGD</td>
<td>11.13</td>
<td>5.26</td>
<td>10.08</td>
<td>10.81</td>
<td>120.44</td>
</tr>
<tr>
<td>RMSprop</td>
<td>7.70</td>
<td>3.48</td>
<td>7.22</td>
<td>8.52</td>
<td>120.45</td>
</tr>
<tr>
<td>ADAM</td>
<td>8.00</td>
<td>3.70</td>
<td>7.56</td>
<td>8.51</td>
<td>120.45</td>
</tr>
</tbody>
</table>

Figure: Learning curves of different SG-MCMC methods for RNN.
Conclusion and Future study

Conclusion:
- Scalable MCMC inference with improved stationary mixing efficiency.
- Remedies to alleviate practical issues with generalized HMC kinetics.
- Better theoretical guarantees.

Future research:
- Connection to optimization methods.
Q&A