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Background: Stochastic Gradient MCMC

Sampling from f(θ) ∝ exp(−U(θ,X))
Bayesian model averaging; uncertainty estimation;
SG-MCMC replaces U(θ,X) with an unbiased stochastic likelihood,
Ũ(θ, xτ ), evaluated from a subset of data, xτ

Ũ(θ) = − N
N ′
∑N ′
i=1 log p(xτi |θ)− log p(θ) , (1)

where {τ1, · · · , τN ′} are random subsets.
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Background: Stochastic Gradient MCMC

Driven by a continuous-time Markov stochastic process.

dΓ = V (Γ)dt+D(Γ)dW , (2)

where Γ denotes the parameters of the augmented system, e.g., p and
θ, V (·) and D(·) are referred as drift and diffusion vectors,
respectively, and W denotes a standard Wiener process.
To have a stationary distribution p(Γ), Fokker-Planck equation needs
to be hold.

∇Γ · p(Γ)V (Γ) = ∇Γ∇TΓ : [p(Γ)D(Γ)]
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Background: Stochastic Gradient Hamiltonian Monte Carlo

SGHMC (stochastic gradient Hamiltonian Monte Carlo) [Chen et. al.,
2014] use stochastic gradient ˜∂θU(θ), and introduce a friction term
B(θ) to account for stochastic noise. The SDE is given as

dθ = ∂pK(p)dt (3)
dp = − ˜∂θU(θ)dt−B(θ)∂pK(p)dt+N (0, 2B(θ)dt). (4)

where K(p) is the kinetics, K(p) = pT p/m
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Background: Stochastic Gradient Nosé-Hoover thermostat

SGNHT (stochastic gradient Nosé-Hoover thermostat) [Ding et. al,
2015] generalize the SGHMC to use thermostat for estimating the
stochastic noise.

dθ = ∂pK(p)dt (5)
dp = − ˜∂θU(θ)dt− ξ∂pK(p)dt+N (0, 2B(θ)dt) (6)
dξ = (pT p− 1)dt. (7)
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Improving over SGMCMC

We propose three techniques for improving efficiency of SGMCMC.
Use generalized kinetics which delivers superior mixing rate.
Use additional dynamic which helps convergence, and has better
ergodic properties.
Use stochastic resampling which helps convergence.
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More efficient kinetics

We consider monomial Gamma (MG) [Zhang et. al. 2016] kinetics
K(p) = |p|1/a, where a ≥ 1.
1) Better stationary mixing 2) Better exploring multimodal
distribution.
However, directly applying such K(p) will not satisfy FP equation.
We use a softened version of MG kinetics.
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Additional First Order Dynamics

Hamiltonian system with a generalized form of kinetics and
thermostat variable (stochastic noise).

H = K(p) + U(θ) + F (ξ) , (8)

Consider SDE of SGNHT under this generalized form

dθ =∇K(p)dt (9)
dp =− (σp + γ∇F (ξ))�∇K(p)dt (10)

−∇U(θ)dt+
√

2σpdW, (11)

dξ = γ
[
∇Kc(p)�∇K(p)−∇2K(p)

]
dt. (12)

With numerical integrator, ∇U(θt) is large → pt+1 is large.
For a > 1, ∇K(p) ≈ |p|1/a−1. pt+1 is large → ∇K(p) is small → θ
won’t change.
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Additional First Order Dynamics (Cont’d)

We consider adding first-order dynamics to θ and ξ

dθ =∇Kc(p)dt−σθ∇U(θ)dt+
√

2σθdW
dp =− (σp + γ∇F (ξ))�∇Kc(p)dt

−∇U(θ)dt+
√

2σpdW,

dξ = γ
[
∇Kc(p)�∇Kc(p)−∇2Kc(p)

]
dt

−σξ∇F (ξ)dt+
√

2σξdW . (13)

Fortunately, the first order Langevin directly compensate this with
large updating signal ∇U(θt+1)
On the other hand, when ∇U(θ) is small, ∇K(p) would be large.
The proposed SDE also has better theoretic guarantee on the
existence and convergence of bounded solutions for a particular
differential equation.
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Stochastic resampling

Resample p and ξ from their marginal distribution
(∝ exp[−K(p)]; exp[−F (ξ)]) with a fixed frequency
Move on a higher energy level is less efficient
Make the sampler to immediately move to a lower energy level.
Converge to stationary distribution
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Figure: Stochastic resampling.
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Theoretical properties

Quantifying how fast the sample average, φ̂T , converges to the true
posterior average, φ̄ ,

∫
φ(θ)π(θ|X)dθ, for φ̂T , 1

T

∑T
t=1 φ(θt),

where T is number of iterations.

Theorem

For the proposed SGMGT and SGMGT-D algorithms, if a fixed stepsize h
is used, we have:

Bias:
∣∣∣Eφ̂T − φ̄∣∣∣ = O (1/(Th) + h) ,

MSE: E
(
φ̂− φ̄

)2
= O

(
1/(Th) + h2

)
.
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Experiments overview

We evaluate our model on various tasks:
1 Toy task: multiple-well synthetic potential
2 Bayesian Logistic Regression
3 Latent Dirichlet Allocation
4 Discriminative RBM
5 Bayesian Recurrent Neural Network
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Multiple-well Synthetic Potential

Generate samples from a complex multimodal distribution.
SGMGT-D: w/ 1st dynamics and resampling
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Figure: Synthetic multimodal distribution. Left: empirical distributions for
different methods. Right: traceplot for each method.
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Bayesian Logistic Regression

Table: Average AUROC and median ESS. Dataset dimensionality is indicated in
parenthesis after the name of each dataset.

AUROC (D) A (15) G (25) H (14) P(8) R (7) C (87)
SGNHT 0.89 0.75 0.90 0.86 0.95 0.65

SGMGT(a=1) 0.92 0.78 0.91 0.86 0.87 0.70
SGMGT-D(a=1) 0.95 0.86 0.95 0.93 0.98 0.73

SGMGT(a=2) 0.93 0.79 0.93 0.88 0.86 0.62
SGMGT-D(a=2) 0.95 0.90 0.95 0.90 0.97 0.69

ESS (D) A (15) G (25) H (14) P(8) R (7) C (87)
SGNHT 869 941 1911 2077 1761 1873

SGMGT-D(a=1) 3147 2131 2448 4244 1494 3605
SGMGT-D(a=2) 2700 1989 2768 3430 2265 2969
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Discriminative RBM for MNIST
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Figure: Experimental results for DRBM. Upper-left: testing accuracies for SGLD,
SGNHT, SGMGT and SGMGT-D. Upper-right through lower-right: traceplots for
SGLD, SGNHT and SGMGT-D with a = 2, respectively.
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Bayesian Recurrent Neural Network

Table: Test negative log-likelihood results on polyphonic music datasets and test
perplexities on PTB using RNN.

Algorithms Piano Nott Muse JSB PTB
SGLD 11.37 6.07 10.83 11.25 127.47
SGNHT 9.00 4.24 7.85 9.27 131.3
SGMGT (a=1) 7.90 4.35 8.42 8.67 120.6
SGMGT (a=2) 10.17 4.64 8.51 8.84 250.5
SGMGT-D (a=1) 7.51 3.33 7.11 8.46 113.8
SGMGT-D (a=2) 7.53 3.35 7.09 8.43 109.0
SGD 11.13 5.26 10.08 10.81 120.44
RMSprop 7.70 3.48 7.22 8.52 120.45
ADAM 8.00 3.70 7.56 8.51 120.45
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Figure: Learning curves of different SG-MCMC methods for RNN.
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Conclusion and Future study

Conclusion:
Scalable MCMC inference with improved stationary mixing efficiency.
Remedies to alleviate practical issues with generalized HMC kinetics.
Better theoretical guarantees.

Future research:
Connection to optimization methods.
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