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Background: Stochastic Gradient MCMC

e Sampling from f(6) x exp(—U(0, X))
@ Bayesian model averaging; uncertainty estimation;
@ SG-MCMC replaces U (0, X) with an unbiased stochastic likelihood,

U(6,x;), evaluated from a subset of data, x,
U(0) = — 33X log p(ar,|0) — log p(6) , (1)

where {71,--- ,7ns} are random subsets.
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Background: Stochastic Gradient MCMC

@ Driven by a continuous-time Markov stochastic process.
dI' =V (T')dt + D(I")dW, (2)

where I' denotes the parameters of the augmented system, e.g., p and
0, V(-) and D(-) are referred as drift and diffusion vectors,
respectively, and W denotes a standard Wiener process.

e To have a stationary distribution p(I"), Fokker-Planck equation needs
to be hold.

Vr - p(D)V(T) = VrVE : [p(1)D(T)]

(Duke university) August 9, 2017 3/18



Background: Stochastic Gradient Hamiltonian Monte Carlo

@ SGHMC (stochastic gradient Hamiltonian Monte Carlo) [Chen et. al.,
2014] use stochastic gradient dgU(0), and introduce a friction term
B(0) to account for stochastic noise. The SDE is given as

do = 8,K (p)dt (3)
dp = —dpU (0)dt — B(0)8,K (p)dt + N(0,2B(6)dt). (4)

where K (p) is the kinetics, K(p) = p’p/m
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Background: Stochastic Gradient Nosé-Hoover thermostat

@ SGNHT (stochastic gradient Nosé-Hoover thermostat) [Ding et. al,
2015] generalize the SGHMC to use thermostat for estimating the
stochastic noise.

df = 8,K (p)dt (5)
dp = —9pU (0)dt — £0,K (p)dt + N'(0,2B(0)dt) (6)
d¢ = (p''p —1)dt. (7)
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Improving over SGMCMC

We propose three techniques for improving efficiency of SGMCMC.
o Use generalized kinetics which delivers superior mixing rate.

o Use additional dynamic which helps convergence, and has better
ergodic properties.

@ Use stochastic resampling which helps convergence.
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More efficient kinetics

o We consider monomial Gamma (MG) [Zhang et. al. 2016] kinetics
K(p) = |p|"/*, where a > 1.

@ 1) Better stationary mixing 2) Better exploring multimodal
distribution.

@ However, directly applying such K(p) will not satisfy FP equation.
@ We use a softened version of MG kinetics.
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Additional First Order Dynamics

@ Hamiltonian system with a generalized form of kinetics and
thermostat variable (stochastic noise).

H=K(p)+U(@0)+F(¢), (8)

o Consider SDE of SGNHT under this generalized form

df =V K (p)dt (9)
dp = — (0, + YV F(€) © VK (p)dt (10)

— VU (0)dt + \/20,dW, (11)
dg = 7 [VK.(p) © VK (p) — V2K (p)] dt. (12)

e With numerical integrator, VU (6,) is large — py41 is large.

o Fora>1, VK(p) = |p|"/* L. piy1 is large — VK (p) is small — 6
won't change.
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Additional First Order Dynamics (Cont'd)

@ We consider adding first-order dynamics to € and &

A0 =V K, (p)dt—oyVU (0)dt + /205dW
dp = = (0p +7VF(§)) © VK (p)dt
— VU (0)dt + 1/20,dW,
dg = 7 [VE.(p) © VEe(p) = V2Kc(p)| dt
—O’gVF(f)dt-F 20§dW.

@ Fortunately, the first order Langevin directly compensate this with
large updating signal VU (0;41)

@ On the other hand, when VU (6) is small, VK (p) would be large.

@ The proposed SDE also has better theoretic guarantee on the
existence and convergence of bounded solutions for a particular
differential equation.
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Stochastic resampling

Resample p and £ from their marginal distribution
(x exp[—K (p)]; exp[—F'(§)]) with a fixed frequency

Move on a higher energy level is less efficient

Make the sampler to immediately move to a lower energy level.

Converge to stationary distribution
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— Hamiltonian level
—Kinetic energy level
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Figure: Stochastic resampling.
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Theoretical properties

@ Quantifying how fast the sample average, QET, converges to the true

posterior average, ¢ £ [ ¢(0)7(0]X)d6, for ¢pp 2 LS 06y,
where T is number of iterations.

For the proposed SGMGT and SGMGT-D algorithms, if a fixed stepsize h
is used, we have:

Bias: ‘Egst - qﬁ‘ (1/(Th) +h) ,

MSE: E ($ - ¢>) =0 (1/(Th) +1?) .
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Experiments overview

@ We evaluate our model on various tasks:
© Toy task: multiple-well synthetic potential
@ Bayesian Logistic Regression
© Latent Dirichlet Allocation
@ Discriminative RBM
© Bayesian Recurrent Neural Network
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Multiple-well Synthetic Potential

@ Generate samples from a complex multimodal distribution.
e SGMGT-D: w/ 1st dynamics and resampling
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Figure: Synthetic multimodal distribution. Left: empirical distributions for
different methods. Right: traceplot for each method.
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Bayesian Logistic Regression

Table: Average AUROC and median ESS. Dataset dimensionality is indicated in
parenthesis after the name of each dataset.

AUROC (D) A (15) G(25) H(14) P(8) R(7) C(87)
SGNHT 089 075 090 086 095  0.65
SGMGT(a=1) 092 078 091 086 087  0.70
SGMGT-D(a=1) 095 086 095 0.93 098 073
SGMGT(a=2) 093 079 093 08 086 062
SGMGT-D(a=2) 0.95 090 0095 090 097  0.69
ESS (D) A(15) G (2) H(14) P(8) R(7) C(87)
SGNHT 869 941 1911 2077 1761 1873
SGMGT-D(a=1) 3147 2131 2448 4244 1494 3605
SGMGT-D(a=2) 2700 1989 2768 3430 2265 2969
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Discriminative RBM for MNIST
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Figure: Experimental results for DRBM. Upper-left: testing accuracies for SGLD,
SGNHT, SGMGT and SGMGT-D. Upper-right through lower-right: traceplots for
SGLD, SGNHT and SGMGT-D with a = 2, respectively.
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Bayesian Recurrent Neural Network

Table: Test negative log-likelihood results on polyphonic music datasets and test
perplexities on PTB using RNN.

Algorithms Piano Nott Muse JSB PTB
SGLD 1137 6.07 10.83 11.25 127.47
SGNHT 9.00 424 785 927 1313

SGMGT (a=1)  7.90 435 842 867 1206
SGMGT (a=2) 1017 464 851 884 2505
SGMGT-D (a=1) 7.51 3.33 7.11 846 1138
SGMGT-D (a=2) 753 335 7.09 8.43 109.0

SGD 11.13 526 10.08 10.81 120.44
RMSprop 7.70 348 7.22 852 12045
ADAM 8.00 370 7.56 851 120.45
Nott 500 Penn Treebank

10 —SGNHT < |

B SGMGT (a=1) | §

2 —SGMGT (a=2) | < 400

T 8 —SGMGT-D (a=1)| &

= , SGMGT-D (a=2)] =

8 8300 \

- -
61

o | [

£5 "%200 \

g 2\ < \

o o

g g I
3 100
0 50 100 0 20 40 60

Epochs Epochs

Figure: Learning curves of different SG-MCMC methods for RNN.
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Conclusion and Future study

Conclusion:
@ Scalable MCMC inference with improved stationary mixing efficiency.
@ Remedies to alleviate practical issues with generalized HMC kinetics.
o Better theoretical guarantees.

Future research:

@ Connection to optimization methods.
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