ICML @ Sydney

Thirty-fourth International Conference on Machine Learning

Stochastic gradient monomial Gamma sampler

Department of Electronic and Computer Engineering¹, Duke University, Durham, NC, 27708 Department of Statistical Science², Duke University, Durham, NC, 27708

Motivation & Contribution

1) Improving stationary mixing efficiency in SGMCMC by leveraging a generalized (potentially heavy-tailed) kinetics.

2) Alleviating numerical issue and satisfying conditions for stationa by leveraging smooth version of generalized kinetics.

3) Ameliorating convergence issue by introducing additional first order dynamics and stochastic resampling.

MGHMC

Hamiltonian Monte Carlo (HMC) leverages Hamiltonian dynamics to propose new samples for x from $p(x) \propto \exp(-U(x))$, driven by the following partial differential equations (PDE):

$$\frac{d\boldsymbol{x}}{dt} = \nabla_p K(\boldsymbol{p}) , \qquad \frac{d\boldsymbol{p}}{dt} = -\nabla_x U(\boldsymbol{x}).$$

- Consider the generalized kinetic $K(p; m, a) = \frac{|p|^{1/a}}{m}, a, m > 0$
- *monomial Gamma* (MG) distribution:

 $\pi(p; m, a) = \exp(-K(p; m, a)) = \frac{m^{-a}}{2\Gamma(a+1)} e^{-\frac{|p|^{1/a}}{m}}.$

Theorem

For univariate target distribution, the one time lag autocorrelation $\rho(x_t, x_{t+1})$ of the analytic MG-SS parameterized by a asymptotically approaches zero when $a \to \infty$, under regularity condition of U(x) and stationary assumption.

- In addition to above, the MG-HMC with large a is particularly advantageous for sampling multimodal distributions.
- Such a performance gain does not come in free.

SGMCMC

- Sampling from $f(\theta) \propto \exp(-U(\theta))$ using minibatch data.
- SGHMC (stochastic gradient Hamiltonian Monte Carlo)

$$d\theta = \partial_p K(p) dt$$

$$dp = -\partial_\theta \tilde{U}(\theta) dt - B(\theta) \partial_p K(p) dt + \mathcal{N}(0, 2B(\theta) dt).$$

SGNHT (stochastic gradient Nosé-Hoover thermostat)

$$d\theta = \partial_p K(p) dt$$

$$dp = -\partial_\theta \tilde{U}(\theta) dt - \xi \partial_p K(p) dt + \mathcal{N}(0, 2B(\theta) dt)$$

$$d\xi = (p^T p - 1) dt.$$

Yizhe Zhang^{1,2}, Changyou Chen¹, Zhe Gan¹, Ricardo Henao¹, Lawrence Carin¹

SGMGS (Stochastic gradient MG sampler)

• Consider applying generalized kinetics K(p) to SGNHT.

$$d\theta = \nabla K(p)dt,$$

$$dp = -[\nabla \tilde{U}(\theta) + \xi \odot \nabla K(p)]dt + \sqrt{2AI}dW,$$

$$d\xi = (\nabla K(p) \odot \nabla K(p) - \nabla^2 K(p))dt.$$

- The existence and uniqueness of the solutions to the Fokker-Planck equation require Lipschitz continuity of drift and diffusion vectors.
- We propose a softened kinetics for $a = \{1, 2\}$

Convergence issue and remedies

• Consider a Hamiltonian system defined in a more general form

$$H = K(p) + U(\theta) + F(\xi) ,$$

• We consider adding Brownian motion to θ and ξ

$$d\theta = \nabla K_c(p) dt - \sigma_{\theta} \nabla U(\theta) dt + \sqrt{2\sigma_{\theta}} dW$$

$$dp = -(\sigma_p + \gamma \nabla F(\xi)) \odot \nabla K_c(p) dt$$

$$-\nabla U(\theta) dt + \sqrt{2\sigma_p} dW,$$

$$d\xi = \gamma \left[\nabla K_c(p) \odot \nabla K_c(p) - \nabla^2 K_c(p) \right] dt$$

$$-\sigma_{\xi} \nabla F(\xi) dt + \sqrt{2\sigma_{\xi}} dW.$$

- $-\sigma_{\theta} \nabla U(\theta) dt + \sqrt{2\sigma_{\theta} dW}$, compensate for the weak updating signal from $\nabla K(p) = \frac{|p|^{1/a-1}}{am}$, by an immediate gradient
- The proposed SDE has better theoretic guarantee on the existence and convergence of bounded solutions for a
- Resampling makes the sampler to immediately move to a lower Hamiltonian energy level.

Multiple-well Synthetic Potential

• Generate samples from a complex multimodal distribution.

Figure: Synthetic multimodal distribution. Left: empirical distributions for different methods. Right: traceplot for each method.

Bayesian Logistic Regression

Table: Average AUROC and median ESS. Dataset dimensionality is indicated in parenthesis after the name of each dataset.

AUROC (D)	A (15)	G (25)	H (14)	P(8)	R (7)	C (
SGNHT	0.89	0.75	0.90	0.86	0.95	0.6
SGMGT(a=1)	0.92	0.78	0.91	0.86	0.87	0.
SGMGT-D(a=1)	0.95	0.86	0.95	0.93	0.98	0.
SGMGT(a=2)	0.93	0.79	0.93	0.88	0.86	0.6
SGMGT-D(a=2)	0.95	0.90	0.95	0.90	0.97	0.6
ESS (D)	A (15)	G (25)	H (14)	P(8)	R (7)	C (
SGNHT	869	941	1911	2077	1761	18
SGMGT-D(a=1)	3147	2131	2448	4244	1494	36
SGMGT-D(a=2)	2700	1989	2768	3430	2265	29

Deep models

• Discriminative RBM & Recurrent Neural Networks. Assuming flat prior. 5000 MC samples.

Algorith SGLD SGNHT GMGT (a=1 SGMGT (a=2 -SGLD -SGNHT -SGMGT (a=1) SGMGT-D (a=2) -SGMGT (a=2) SGD -SGMGT-D (a=1 RMSprop SGMGT-D (a=2) 1000 # of iterations # of iterations SGMGT (a=1 -SGMGT (a=2) SGMGT-D (a=1) SGMGT-D (a=2) 500 1000 1500 1000 500 # of iterations # of Iterations Epochs

Conclusion

- Scalable MCMC inference with generalized HMC variants. Future direction:
- Adaptive selection of monomial parameters
- Connection to optimization methods.

