Motivation & Contribution
1) Improving stationary mixing efficiency in SGMCMC by leveraging a generalized (potentially heavy-tailed) kinetics.
2) Alleviating numerical issue and satisfying conditions for stationarity by leveraging smooth version of generalized kinetics.
3) Ameliorating convergence issue by introducing additional first order dynamics and stochastic resampling.

Theorem

For univariate target distribution, the one time lag autocorrelation $p(x_t, x_{t+1})$ of the analytic MG-SS parameterized by a asymptotically approaches zero when $a \to \infty$, under regularity condition of $U(x)$ and stationary assumption.

In addition to above, the MG-HMC with large a is particularly advantageous for sampling multimodal distributions. Such a performance gain does not come in free.

SGMCMC
Sampling from $f(\theta) \propto \exp(-U(\theta))$ using minibatch data.

SGHMC (stochastic gradient Hamiltonian Monte Carlo)

- $\text{d} p = \partial p K(\theta)p d\theta$
- $\text{d} p = -\partial p U(\theta)d\theta - B(\theta) \partial p K(\theta)p d\theta + \mathcal{N}(0, 2B(\theta)d\theta)$.
- SGNHT (stochastic gradient Nosé-Hoover thermostat)

- $\text{d} p = -\partial p U(\theta)d\theta - \xi \partial p K(\theta)p d\theta + \mathcal{N}(0, 2B(\theta)d\theta)$
- $d\xi = (\dot{p} - 1)dt$.

Conclusion
- Scalable MCMC inference with generalized HMC variants.
- Future direction:
 - Adaptive selection of monomial parameters
 - Connection to optimization methods.