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Introduction

Background

Time series analysis has wide applications

Weather Forecast Quantitative Finance Control Engineering
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Introduction

Sequence Modeling in Deep Learning

Deep Neural Networks - without latent variables

I Recurrent Neural Networks (RNN)

I Long Short Term Memory (LSTM)

Deep Generative Models - with latent variables

Built upon non-temporal models, such as

I Restricted Boltzmann Machine (RBM)

I Sigmoid Belief Network (SBN)

I Variational AutoEncoder (VAE)
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Introduction

Deep Generative Models for Sequence Modeling

Original Model =⇒ Temporal Model

RBM =⇒ Temporal RBM1, Recurrent Temporal RBM2

SBN =⇒ Temporal SBN3

VAE =⇒ Variational Recurrent AE4

1
Sutskever and Hinton, Learning Multilevel Distributed Representations for High-Dimensional Sequences.

2
Sutskever et al., The Recurrent Temporal Restricted Boltzmann Machine

3
Gan et al., Deep Temporal Sigmoid Belief Networks for Sequence Modeling.

4
Fabius and Amersfoort, Variational Recurrent Auto-Encoders.
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Introduction

Problem

What if we want to

1. generate mulitple styles of sequences from a single model?

2. control the style of sequence during generation?

3. combine multiple styles to generate a new style?

Need side information y to distinguish styles + a conditional model.
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Introduction

SBN vs. RBM

Base Model SBN RBM

Temporal Model Temporal SBN TRBM / RTRBM

Conditional Model Conditional TSBN Conditional RBM

Factored Model Factored CTSBN Factored CRBM
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Model

Temporal Sigmoid Belief Network (TSBN)

A deep directed generative model for modeling discrete time series data.

vt−1 vt vt+1

ht−1 ht ht+1

zt−1 zt zt+1

W1

W3

W4

W2

vt observation at time t.

ht , zt latent variables at time t.

Wi model parameters.
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Model

Formulation of TSBN

Single layer joint probability:

pθ(V,H) = p(h1)p(v1|h1)
T∏
t=2

p(ht |ht−1, vt−1) · p(vt |ht , vt−1) (1)

where

p(hjt = 1|ht−1, vt−1) = σ(W1ht−1 + W3vt−1 + b)

p(vjt = 1|ht , vt−1) = σ(W2ht + W4vt−1 + b)
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Model

Side Information

Provide additional side information yt at each frame t during generation:

p(ht |ht−1, vt−1) =⇒ p(ht |ht−1, vt−1, yt)
p(vt |ht , vt−1) =⇒ p(vt |ht , vt−1, yt)

We assume that yt is a vector with S elements.
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Model

Conditional Generation

Consider the case where yt is a one-hot encoded vector for styles.

[1, 0, 0, · · · ]
Walking

[0, 1, 0, · · · ]
Running

[0, 0, 1, · · · ]
Dancing

Train one model for each style, and combine the models.
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Model

Conditional TSBN

Generalize that to real valued yt :

h̃t = W
(y)
1 ht−1 + W

(y)
3 vt−1 + b(y) (2)

ṽt = W
(y)
2 ht + W

(y)
4 vt−1 + c(y) (3)

where b(y) = Byt , c(y) = Cyt , and W
(y)
i(jk) =

∑S
s=1 Ŵi(jks)yst .

The model parameter Ŵi is a three way tensor.

Problems:

1. Too many params;

2. Poor generalization.
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Model

Factoring Weight Parameters

We factor the weight matrices W(y) ∈ RJ×M as

W(y) = Wa · diag(Wbyt) ·Wc (4)

Wa ∈ RJ×F , Wb ∈ RF×S and Wc ∈ RF×M . F is the number of factors.

Wa input-to-factor relationship;

Wc factor-to-output relationship;

diag(Wbyt) factor-to-factor relationship for each style.

Song, Gan, Carin (Tsinghua, Duke) Factored Conditional TSBN June 21, 2016 14 / 32



Model

Factoring Weight Parameters (cont’d)

ht−1 ht

yt

Ŵ

Figure: Non-factored weights

ht−1 ht

yt

Wb

Wa Wc

Figure: Factored weights

Advantages of factoring:

1. Reduces the number of parameters from J ·M · S to (J + M + S) · F .

2. Have parameters that explicitly capture the similarties among styles
(Wa and Wc).
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Model

Deep Architecture

For a network with L layers:

p(h(L)
t ) =

J(L)∏
j=1

p(h
(L)
jt |h

(L)
t−1,h

(L−1)
t−1 , yt) (5)

. . .

p(h(`)
t ) =

J(`)∏
j=1

p(h
(`)
jt |h

(`+1)
t ,h(`)

t−1,h
(`−1)
t−1 , yt) (6)

. . .

p(h(1)
t ) =

J(1)∏
j=1

p(h
(1)
jt |h

(2)
t ,h(1)

t−1, vt−1, yt) (7)
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Inference and Learning

Scalable Learning and Inference

A recognition model qφ(H|V,Y) to approximate the posterior p(H|V,Y),
with the following objective:

L(V|Y,θ,φ) = Eq[log qφ(H|V,Y)− log pθ(V,H|Y)] (8)

Song, Gan, Carin (Tsinghua, Duke) Factored Conditional TSBN June 21, 2016 18 / 32



Inference and Learning

Recognition Model qφ

qφ(H|V,Y) =
T∏
t=1

q(ht |ht−1, vt , vt−1, yt) (9)

vt−1 vt vt+1

ht−1 ht ht+1

zt−1 zt zt+1

vt−1 vt vt+1

ht−1 ht ht+1

zt−1 zt zt+1

Figure: Generative model (left) and recognition model (right).
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Inference and Learning

Semi-supervised Learning

Obtaining labels for sequential data might be expensive (e.g. documents).

Semi-supervised framework can:

I Train a generative model and a classifier;

I Make use of unlabeled data.

Generative model:

pθ(V,H,Y) = pθ(Y;π) · pθ(V,H|Y) (10)

where pθ(Y;π) is the prior distribution of Y.
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Inference and Learning

Semi-supervised Learning (cont’d)

A recognition model for both H and Y:

qφ(H,Y|V) = qφ(H|V,Y) · qφ(Y|V) (11)

qφ(Y|V) denotes the classifier.

The objective function contains:

1. Labeled data:
I Generative loss: Eq[log qφ(H|V,Y)− log pθ(V,H|Y)]
I Discriminative loss: Ep̃l (V,Y)[log qθ(Y|V)]

2. Unlabeled data: Eq[log qφ(H,Y|V)− log pθ(H,V,Y)]
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Experiments

Tasks & Models

Prediction Given v1, . . . , vt−1, predict vt .

Generation Given v1, . . . vt , generate vt , vt+1 . . ..

Classification Given v1, . . . vn, identify the style yn.

CTSBN Conditional Temporal SBN.

FCTSBN Factored Conditional TSBN.

dFCTSBN Two-layer Factored CTSBN.
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Experiments

mocap2 Prediction

Motion capture data with 2 styles (walking and running).

Method Walking Running

FCTSBN 4.59± 0.35 2.86± 0.23
CTSBN 4.67± 0.22 3.41± 0.65
TSBN 5.12± 0.50 4.85± 1.26

dFCTSBN 4.31± 0.13 2.58± 0.21
DTSBN-S 4.40± 0.28 2.56± 0.40
DTSBN-D 4.62± 0.01 2.84± 0.01

ss-SRTRBM 8.13± 0.06 5.88± 0.05
g-RTRBM 14.41± 0.38 10.91± 0.27

Table: Prediction error obtained for the mocap2 dataset.
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Experiments

mocap10 Generation

Motion capture data with 10 styles, but with less frames in each style.

We can generate 9 styles, with style transitions and combinations.

chicken to sexy. strong to drunk.
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}




var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}




Experiments

mocap10 Semi-supervised Learning (Classifier)

Baselines

NN Nearest Neighbors

TSVM Transductive SVM

Softmax Softmax classifier with L2
regularization.
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Experiments

mocap2 Semi-supervised Learning (Generator)

I 33 motion videos in total.

I Only 1 video for each style is labeled.

jog to walk
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Experiments

Weather Prediction

Question
How does the representation of side information affect performance?

Weather data from 25 different locations, on a 5× 5 grid.

Figure: Areas with colors indicate climate zones.
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Experiments

Weather Prediction (cont’d)

Three types of side information:

[−1.41, 1.41]

Geo-location (2d)

[0, 0, 1, 0, 0; 1, 0, 0, 0, 0]

Concatenated vectors,
for grid position (10d)

[0, . . . , 0, 1, 0, . . . , 0]

One-hot encoded
(25d)
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Experiments

Weather Prediction (cont’d)

2d 10d 25d

CTSBN 6.45± 0.11 3.83± 0.20 3.78± 0.01
FCTSBN 5.46± 0.06 3.43± 0.03 3.37± 0.02

dFCTSBN 5.09± 0.11 3.37± 0.01 3.35± 0.02

FCRBM 5.62± 0.35 3.77± 0.38 3.75± 0.08

Table: Average prediction error of 25 locations on the weather dataset.

I The 25d CTSBN is 12.5x larger than 2d version.

I The 25d FCTSBN is less than 1.25x larger
- much more scalable style-wise!
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Takeaway

Takeaway

I A deep directed generative model for multiple sequences with styles.

I Additional side information allows for conditional generation.

I Factoring reduces the model complexity while improving
generalization.

I The generative model is a good regularizer for semi-supervised
learning.
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