Factored Temporal Sigmoid Belief Networks for Sequence Learning

Jiaming Song¹ Zhe Gan² and Lawrence Carin²

¹Department of Computer Science and Technology Tsinghua University

²Department of Electrical and Computer Engineering Duke University

June 21, 2016

Song, Gan, Carin (Tsinghua, Duke)

Factored Conditional TSBN

June 21, 2016 1 / 32

Outline

Introduction

Model

Inference and Learning

Experiments

Takeaway

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

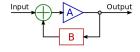
Background

Time series analysis has wide applications

≡	New York 1:13 AM EDT				+
Forecast					
2AM 3AM () ⁵⁰ () ⁵⁰ 22° 21°	440M 544M	6AM	7AM	84M	9AM
Thursday		D			
Friday				26°	
Saturday		ļ:			
Sunday		ź			
Monday	ź	5			

Weather Forecast

Quantitative Finance



Control Engineering

Factored Conditional TSBN

June 21, 2016 3 / 32

Sequence Modeling in Deep Learning

Deep Neural Networks - without latent variables

- Recurrent Neural Networks (RNN)
- Long Short Term Memory (LSTM)

Deep Generative Models - with latent variables

Built upon non-temporal models, such as

- Restricted Boltzmann Machine (RBM)
- Sigmoid Belief Network (SBN)
- Variational AutoEncoder (VAE)

Deep Generative Models for Sequence Modeling

Original Model	\Rightarrow	Temporal Model
RBM	\Rightarrow	Temporal RBM ¹ , Recurrent Temporal RBM ²
SBN	\implies	Temporal SBN ³
VAE	\implies	Variational Recurrent AE ⁴

¹Sutskever and Hinton, Learning Multilevel Distributed Representations for High-Dimensional Sequences.

⁴ Fabius and Amersfoort, Variational Recurrent Auto-Encoders.

Song, Gan, Carin (Tsinghua, Duke)

Factored Conditional TSBN

²Sutskever et al., The Recurrent Temporal Restricted Boltzmann Machine

³Gan et al., Deep Temporal Sigmoid Belief Networks for Sequence Modeling.

Problem

What if we want to

- 1. generate mulitple styles of sequences from a single model?
- 2. control the style of sequence during generation?
- 3. combine multiple styles to generate a new style?

Need side information y to distinguish styles + a conditional model.

SBN vs. RBM

Base Model	SBN	RBM
Temporal Model	Temporal SBN	TRBM / RTRBM
Conditional Model	Conditional TSBN	Conditional RBM
Factored Model	Factored CTSBN	Factored CRBM

Song, Gan, Carin (Tsinghua, Duke)

Factored Conditional TSBN

June 21, 2016 7 / 32

SBN vs. RBM

Base Model	SBN	RBM
Temporal Model	Temporal SBN	TRBM / RTRBM
Conditional Model	Conditional TSBN	Conditional RBM
Factored Model	Factored CTSBN	Factored CRBM

Song, Gan, Carin (Tsinghua, Duke)

Factored Conditional TSBN

June 21, 2016 7 / 32

Outline

Introduction

Model

Inference and Learning

Experiments

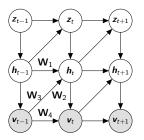
Takeaway

3

< ロ > < 同 > < 回 > < 回 >

Temporal Sigmoid Belief Network (TSBN)

A deep **directed** generative model for modeling **discrete** time series data.



 v_t observation at time t. h_t, z_t latent variables at time t. W_i model parameters.

Formulation of TSBN

Single layer joint probability:

$$p_{\theta}(\mathbf{V}, \mathbf{H}) = p(\mathbf{h}_1)p(\mathbf{v}_1|\mathbf{h}_1)\prod_{t=2}^{T} p(\mathbf{h}_t|\mathbf{h}_{t-1}, \mathbf{v}_{t-1}) \cdot p(\mathbf{v}_t|\mathbf{h}_t, \mathbf{v}_{t-1}) \quad (1)$$

where

$$p(h_{jt} = 1 | \boldsymbol{h}_{t-1}, \boldsymbol{v}_{t-1}) = \sigma(\mathbf{W}_1 \boldsymbol{h}_{t-1} + \mathbf{W}_3 \boldsymbol{v}_{t-1} + \boldsymbol{b})$$
$$p(v_{jt} = 1 | \boldsymbol{h}_t, \boldsymbol{v}_{t-1}) = \sigma(\mathbf{W}_2 \boldsymbol{h}_t + \mathbf{W}_4 \boldsymbol{v}_{t-1} + \boldsymbol{b})$$

Song, Gan, Carin (Tsinghua, Duke)

- 4 同 6 4 日 6 4 日 6

3

Side Information

Provide additional side information y_t at each frame t during generation:

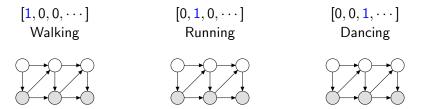
$$p(\mathbf{h}_t | \mathbf{h}_{t-1}, \mathbf{v}_{t-1}) \Longrightarrow p(\mathbf{h}_t | \mathbf{h}_{t-1}, \mathbf{v}_{t-1}, \mathbf{y}_t)$$

 $p(\mathbf{v}_t | \mathbf{h}_t, \mathbf{v}_{t-1}) \Longrightarrow p(\mathbf{v}_t | \mathbf{h}_t, \mathbf{v}_{t-1}, \mathbf{y}_t)$

We assume that y_t is a vector with S elements.

Conditional Generation

Consider the case where y_t is a one-hot encoded vector for styles.



Train one model for each style, and combine the models.

3

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Model

Conditional TSBN

Generalize that to real valued y_t :

$$\tilde{\boldsymbol{h}}_t = \boldsymbol{\mathsf{W}}_1^{(y)} \boldsymbol{h}_{t-1} + \boldsymbol{\mathsf{W}}_3^{(y)} \boldsymbol{v}_{t-1} + \boldsymbol{b}^{(y)}$$
(2)

$$\tilde{\boldsymbol{v}}_t = \boldsymbol{\mathsf{W}}_2^{(y)} \boldsymbol{h}_t + \boldsymbol{\mathsf{W}}_4^{(y)} \boldsymbol{v}_{t-1} + \boldsymbol{c}^{(y)}$$
(3)

where
$$m{b}^{(y)} = m{B}m{y}_t$$
, $m{c}^{(y)} = m{C}m{y}_t$, and $m{W}^{(y)}_{i(jk)} = \sum_{s=1}^S \hat{m{W}}_{i(jks)} y_{st}$.

The model parameter $\hat{\mathbf{W}}_i$ is a three way tensor.

Problems:

- 1. Too many params;
- 2. Poor generalization.

Factoring Weight Parameters

We factor the weight matrices $\mathbf{W}^{(y)} \in \mathbb{R}^{J \times M}$ as

$$\mathbf{W}^{(y)} = \mathbf{W}_{a} \cdot \operatorname{diag}(\mathbf{W}_{b} \mathbf{y}_{t}) \cdot \mathbf{W}_{c}$$
(4)

 $\mathbf{W}_a \in \mathbb{R}^{J \times F}$, $\mathbf{W}_b \in \mathbb{R}^{F \times S}$ and $\mathbf{W}_c \in \mathbb{R}^{F \times M}$. F is the number of factors.

W_a **input**-to-**factor** relationship;

W_c factor-to-output relationship;

 $diag(W_b y_t)$ factor-to-factor relationship for each style.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Factoring Weight Parameters (cont'd)

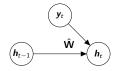


Figure: Non-factored weights

 $(\mathbf{h}_{t-1}) \mathbf{W}_{a} \mathbf{W}_{c} \mathbf{W}_{b}$

Figure: Factored weights

Advantages of factoring:

- **1.** Reduces the number of parameters from $J \cdot M \cdot S$ to $(J + M + S) \cdot F$.
- Have parameters that explicitly capture the similarties among styles (W_a and W_c).

Deep Architecture

For a network with *L* layers:

$$p(\boldsymbol{h}_{t}^{(L)}) = \prod_{j=1}^{J^{(L)}} p(\boldsymbol{h}_{jt}^{(L)} | \boldsymbol{h}_{t-1}^{(L)}, \boldsymbol{h}_{t-1}^{(L-1)}, \boldsymbol{y}_{t})$$
(5)

$$p(\boldsymbol{h}_{t}^{(\ell)}) = \prod_{j=1}^{J^{(\ell)}} p(\boldsymbol{h}_{jt}^{(\ell)} | \boldsymbol{h}_{t}^{(\ell+1)}, \boldsymbol{h}_{t-1}^{(\ell)}, \boldsymbol{h}_{t-1}^{(\ell-1)}, \boldsymbol{y}_{t})$$
(6)

$$p(\boldsymbol{h}_{t}^{(1)}) = \prod_{j=1}^{J^{(1)}} p(\boldsymbol{h}_{jt}^{(1)} | \boldsymbol{h}_{t}^{(2)}, \boldsymbol{h}_{t-1}^{(1)}, \boldsymbol{v}_{t-1}, \boldsymbol{y}_{t})$$
(7)

Song, Gan, Carin (Tsinghua, Duke)

. . .

. . .

June 21, 2016 16 / 32

3

<ロ> <同> <同> < 同> < 同>

Outline

Introduction

Model

Inference and Learning

Experiments

Takeaway

3

< ロ > < 同 > < 回 > < 回 >

Scalable Learning and Inference

A recognition model $q_{\phi}(\mathbf{H}|\mathbf{V},\mathbf{Y})$ to approximate the posterior $p(\mathbf{H}|\mathbf{V},\mathbf{Y})$, with the following objective:

$$\mathcal{L}(\mathbf{V}|\mathbf{Y}, \theta, \phi) = \mathbb{E}_{q}[\log q_{\phi}(\mathbf{H}|\mathbf{V}, \mathbf{Y}) - \log p_{\theta}(\mathbf{V}, \mathbf{H}|\mathbf{Y})]$$
(8)

Song, Gan, Carin (Tsinghua, Duke)

Factored Conditional TSBN

June 21, 2016 18 / 32

- 4 周 ト 4 日 ト - 日 日

Recognition Model q_{ϕ}

$$q_{\phi}(\mathbf{H}|\mathbf{V},\mathbf{Y}) = \prod_{t=1}^{T} q(\mathbf{h}_t|\mathbf{h}_{t-1}, \mathbf{v}_t, \mathbf{v}_{t-1}, \mathbf{y}_t)$$
(9)

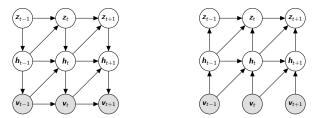


Figure: Generative model (left) and recognition model (right).

Song, Gan, Carin (Tsinghua, Duke)

Factored Conditional TSBN

June 21, 2016 19 / 32

3

(人間) くちり くちり

Semi-supervised Learning

Obtaining labels for sequential data might be expensive (e.g. documents).

Semi-supervised framework can:

- Train a generative model and a classifier;
- Make use of unlabeled data.

Generative model:

$$p_{\theta}(\mathbf{V}, \mathbf{H}, \mathbf{Y}) = p_{\theta}(\mathbf{Y}; \pi) \cdot p_{\theta}(\mathbf{V}, \mathbf{H} | \mathbf{Y})$$
(10)

where $p_{\theta}(\mathbf{Y}; \pi)$ is the prior distribution of \mathbf{Y} .

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ● の Q ()

Semi-supervised Learning (cont'd)

A recognition model for both **H** and **Y**:

$$q_{\phi}(\mathbf{H}, \mathbf{Y} | \mathbf{V}) = q_{\phi}(\mathbf{H} | \mathbf{V}, \mathbf{Y}) \cdot q_{\phi}(\mathbf{Y} | \mathbf{V})$$
(11)

 $q_{\phi}(\mathbf{Y}|\mathbf{V})$ denotes the classifier.

The objective function contains:

- 1. Labeled data:
 - Generative loss: $\mathbb{E}_q[\log q_\phi(\mathbf{H}|\mathbf{V},\mathbf{Y}) \log p_\theta(\mathbf{V},\mathbf{H}|\mathbf{Y})]$
 - Discriminative loss: $\mathbb{E}_{\tilde{p}_l(\mathbf{V},\mathbf{Y})}[\log q_{\theta}(\mathbf{Y}|\mathbf{V})]$
- 2. Unlabeled data: $\mathbb{E}_q[\log q_\phi(\mathbf{H}, \mathbf{Y} | \mathbf{V}) \log p_\theta(\mathbf{H}, \mathbf{V}, \mathbf{Y})]$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ○ ○ ○

Outline

Introduction

Model

Inference and Learning

Experiments

Takeaway

Song, Gan, Carin (Tsinghua, Duke)

Factored Conditional TSBN

June 21, 2016 22 / 32

3

Tasks & Models

Prediction	Given v_1, \ldots, v_{t-1} , predict v_t .
Generation	Given $\mathbf{v}_1, \ldots \mathbf{v}_t$, generate $\mathbf{v}_t, \mathbf{v}_{t+1} \ldots$
Classification	Given $v_1, \ldots v_n$, identify the style y_n .
CTSBN	Conditional Temporal SBN.
FCTSBN	Factored Conditional TSBN.
dFCTSBN	Two-layer Factored CTSBN.

Song, Gan, Carin (Tsinghua, Duke)

June 21, 2016 23 / 32

<ロ> <同> <同> < 同> < 同>

mocap2 Prediction

Motion capture data with **2 styles** (walking and running).

Method	Walking	Running	
FCTSBN	$\textbf{4.59} \pm 0.35$	$\textbf{2.86} \pm 0.23$	
CTSBN	4.67 ± 0.22	3.41 ± 0.65	
TSBN	5.12 ± 0.50	$\textbf{4.85} \pm \textbf{1.26}$	
dFCTSBN	$\textbf{4.31} \pm 0.13$	2.58 ± 0.21	
DTSBN-S	4.40 ± 0.28	$\textbf{2.56} \pm 0.40$	
DTSBN-D	4.62 ± 0.01	2.84 ± 0.01	
ss-SRTRBM	8.13 ± 0.06	5.88 ± 0.05	
g-RTRBM	14.41 ± 0.38	10.91 ± 0.27	

Table: Prediction error obtained for the mocap2 dataset.

Song, Gan, Carin (Tsinghua, Duke)

- 4 同 6 4 日 6 4 日 6

mocap10 Generation

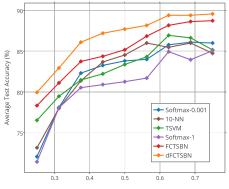
Motion capture data with **10 styles**, but with less frames in each style. We can generate 9 styles, with style transitions and combinations.

chicken to sexy.

strong to drunk.

同 ト イヨ ト イヨ ト

mocap10 Semi-supervised Learning (Classifier)



Percentage of labeled training data

Baselines

NN Nearest Neighbors
 TSVM Transductive SVM
 Softmax Softmax classifier with L2 regularization.

mocap2 Semi-supervised Learning (Generator)

- 33 motion videos in total.
- Only 1 video for each style is labeled.

jog to walk

Song, Gan, Carin (Tsinghua, Duke)

Weather Prediction

Question

How does the representation of side information affect performance?

Weather data from 25 different locations, on a 5×5 grid.

Figure: Areas with colors indicate climate zones.

Song, Gan, Carin (Tsinghua, Duke)

Factored Conditional TSBN

June 21, 2016

28 / 32

Weather Prediction (cont'd)

Three types of side information:

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Weather Prediction (cont'd)

	2d	10d	25d
CTSBN	6.45 ± 0.11	3.83 ± 0.20	3.78 ± 0.01
FCTSBN	5.46 ± 0.06	3.43 ± 0.03	3.37 ± 0.02
dFCTSBN	$\textbf{5.09} \pm 0.11$	$\textbf{3.37}\pm0.01$	$\textbf{3.35}\pm0.02$
FCRBM	5.62 ± 0.35	3.77 ± 0.38	3.75 ± 0.08

Table: Average prediction error of 25 locations on the weather dataset.

- ► The 25d CTSBN is **12.5x larger** than 2d version.
- The 25d FCTSBN is less than 1.25x larger - much more scalable style-wise!

Outline

Introduction

Model

Inference and Learning

Experiments

Takeaway

э

Takeaway

- ► A deep directed generative model for multiple sequences with styles.
- ► Additional side information allows for conditional generation.
- Factoring reduces the model complexity while improving generalization.
- The generative model is a good regularizer for semi-supervised learning.

(4 同) (4 日) (4 日)