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Abstract

Deep generative models have achieved tremendous success in recent years, with ap-
plications in various tasks involving vision and language intelligence. In this disser-
tation, I will mainly discuss the contributions that I have made in this field during
my Ph.D. study. Specifically, the dissertation is divided into two parts.

In the first part, I will mainly focus on one specific kind of deep directed generative
model, called Sigmoid Belief Network (SBN). First, I will present a fully Bayesian
algorithm for efficient learning and inference of SBN. Second, since the original SBN
can be only used for binary image modeling, I will also discuss the generalization
of it to model spare count-valued data for topic modeling, and sequential data for
motion capture synthesis, music generation and dynamic topic modeling.

In the second part, I will mainly focus on visual captioning (i.e., image-to-text
generation), and conditional image synthesis. Specifically, I will first present Seman-
tic Compositional Network for visual captioning, and emphasize interpretability and
controllability revealed in the learning algorithm, via a mixture-of-experts design,
and the usage of detected semantic concepts. I will then present Triangle Genera-
tive Adversarial Network, which is a general framework that can be used for joint
distribution matching and learning the bidirectional mappings between two different
domains. We consider the joint modeling of image-label, image-image and image-
attribute pairs, with applications in semi-supervised image classification, image-to-

image translation and attribute-based image editing.
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1

Introduction and Background

Deep generative models have achieved tremendous success in recent years, with ap-
plications in different vision and language intelligence tasks. In this chapter, I will
first provide a brief overview of several popular deep generative models. Based on
this, I will then discuss the contributions that I have made in this field during my
Ph.D. study. This includes the deep generative models that I have developed for

documents, human motions, visual captioning and joint distribution matching.
1.1 Deep Generative Models: An Overview

One of the most important tasks for artificial intelligence (Al) is to develop algorithms
and techniques that endow computers with an understanding of our world. Genera-
tive models are one of the most promising approaches towards this goal!. Generative
models typically have latent variables that are inferred given observed data; the la-
tent variables are often used for a down-stream goal, such as classification. After
training, such models are useful for inference tasks given subsequent observed data.

On the other hand, generative models are also able to synthesize data by drawing

! https://blog.openai.com/generative-models/
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latent variables from the prior and pushing them through the model. This suggests
that generative models are at least useful in two aspects: (i) analyzing observed data
in terms of latent variables; (i7) generating “fake-but-realistic” data from real data.
The intuition behind this follows a famous quote:
“What I cannot create, I do not understand.”
-Richard Feynman

Generative models that are descriptive of data have been widely employed in
statistics and machine learning. Factor models (FMs) represent one commonly used
generative model (Tipping and Bishop, 1999), and mixtures of FMs have been em-
ployed to account for more-general data distributions (Ghahramani and Hinton,
1997). However, such models are not powerful and flexible enough in terms of extract-
ing meaningful representations from rich sensory inputs. Deep learning has achieved
tremendous success in recent years, and arguments have been made to suggest that
building such systems requires deep architectures: models composed of several layers
of nonlinear processing (Bengio et al., 2013).

In this dissertation, we will mainly focus on deep generative models. Specifically,
the following deep generative models will be discussed: (i) Restricted Boltzmann Ma-
chines (RBMs) (Hinton, 2002); (4) Sigmoid Belief Networks (SBNs) (Neal, 1992);
(73i) Variational Autoencoders (VAEs) (Kingma and Welling, 2013); (iv) Genera-
tive Adversarial Networks (GANs) (Goodfellow et al., 2014); and (v) autoregressive

models.
1.1.1 Restricted Boltzmann Machines

Restricted Boltzmann machines (RBMs) have been used effectively in modeling dis-
tributions over binary-valued data (Salakhutdinov, 2015). Recent work on Boltz-
mann machines and their generalizations to exponential family distributions (Welling

et al., 2005) have allowed these models to be successfully used in many applications.



% 1%

(Left) RBM (Right) SBN

FiGURE 1.1: Graphical model of RBM and SBN, respectively.

Below we will review the standard binary RBM.

An RBM is a particular type of Markov random field that has a two-layer architec-

ture (Smolensky, 1986), in which the “visible” stochastic binary variables v € {0, 1}”

are connected to “hidden” stochastic binary variables h € {0,1}¥, as shown in Fig-

ure 1.1(Left). The energy of the joint state {v, h} is defined as follow:

E(v,h;0)= v Wh—-b'v—a'h

=—ZZW”U, val_zaﬂﬂ’

i=17=1 7j=1

where @ = {W, b, a} are the model parameters. W;; represents the symmetric inter-

action term between visible variable ¢ and hidden variable j, and b; and a; are bias

terms. The joint distribution over the visible and hidden variables is defined by

P(v,h;0) =

Z(0) exp(—E(v, h;0))

ZZeXp (v,h;0)).

The model then assigns the following probability to a visible vector v:

1

P(v;0) = mZexp(—E(v,h; 0)).

(1.3)

(1.4)

(1.5)

Z(0) is a computationally intractable partition function that guarantees P(v;0) is

a valid probability distribution.



The conditional distributions over hidden variables h and visible vectors v can be

easily derived from Equation (1.3) and are given by the following logistic functions:

P(h|v;0) = Hp(hj|v), P(v|h;0) = H(vi|h) (1.6)

)

p(hj = 1"0) =0 (Z Wijvi + aj> (17)

plvi = 1h) = 0 (2 Wish; + bi) , (1.8)
J

where o(z) = 1/(1+exp(—z)) is the logistic function. As can be seen, the conditional
distributions in the RBM are factorial, which makes inference fast. Since exact
maximum likelihood learning in this model is intractable, in practice, learning is
done by using the so-called Contrastive Divergence (CD) algorithm (Hinton, 2002).

The original binary RBM has been generalized to model real-valued data (Hinton
et al., 2006), such as pixel intensities of image patches, sparse count data (Salakhut-
dinov and Hinton, 2009b), such as word count vectors in a document, and sequential
data (Sutskever and Hinton, 2007), such as human motion captures. The RBM also
serves as the building blocks for the Deep Belief Network (DBN) (Hinton et al., 2006)
and Deep Boltzmann Machine (DBM) (Salakhutdinov and Hinton, 2009a), which are
two popular deep probabilistic generative models that provide state-of-the-art results
in many problems. The RBM model has also recently been generalzied to the Trun-
cated Gaussian Graphical Models (TGGM) (Su et al., 2017), which is a general
framework for unsupervised learning that can be used for real-valued, binary and

count data. TGGM also has close connections to ReLLU-based neural networks.
1.1.2  Sigmoid Belief Networks

Deep directed generative models are considered for binary data, based on the Sigmoid

Belief Network (SBN) (Neal, 1992) (using methods like those discussed in Salakhut-

4



dinov et al. (2013), the model may be readily extended to real-valued data). Assume
we have N binary visible vectors, the nth of which is denoted v, € {0,1}/. An
SBN is a Bayesian network that models each v,, in terms of binary hidden variables
h, € {0,1}¥ and weights W € R7*K ag

p(vjn = llwj, hy, ;) = a(ijhn +¢), (1.9)
p(h;m = 1|bk) = U(bk), (1.10)

where o(-) is the logistic function defined as o(x) = 1/(1+exp(—2)), vn = [Vin, -+, V],
hy, = [hin, - hgn] s W = [wy,...,ws|", c=[c1,..., c;]" and b = [by,...,bx]"
are bias terms. The “local” latent vector h,, is observation-dependent (a function of
n), while the “global” parameters W are used to characterize the mapping from h,,
to v, for all n.

The graphical model of the SBN is shown in Figure 1.1(Right). As can be seen,
the SBN is closely related to the RBM. Specifically, the energy function of an RBM
is defined as

—E(v,,h,) =v c+v, Wh, +h'b, (1.11)

In contrast, the energy function of an SBN may be written as
—E(v,,h,) = v c+v,Wh, +h'b— Z log(1 + exp('ijhn +¢;)) . (1.12)
J
The additional term in (1.12), when compared to (1.11), makes the energy function
no longer a linear function of weights W, but a simple partition function is obtained.
Therefore, the full likelihood under an SBN is trivial to calculate. Furthermore,
SBNs explicitly exhibit the generative process to obtain data, in which the hidden
layer provides a directed “explanation” for patterns generated in the visible layer.
Different algorithms have been developed for efficient learning and inference of
SBN, including Gibbs sampling (Neal, 1992; Gan et al., 2015¢), mean-field variational
inference (Saul et al., 1996), a Gaussian-field approach (Barber and Sollich, 1999),

5



(Lef) DBN  (Middle) DBM (Right) DSBN
F1GURE 1.2: Graphical model of DBN, DBM and DSBN, respectively.

the wake-sleep algorithm (Hinton et al., 1995b), the Neural Variational Inference
and Learning (NVIL) algorithm (Mnih and Gregor, 2014), Monte Carlo expectation
maximization (Song et al., 2016b), stochastic gradient MCMC (Chen et al., 2015a; Li
et al., 2016a), stochastic spectral descent (Carlson et al., 2016), the recently proposed
factorized asymptotic Bayesian method (Song et al., 2017) among many others.
The original SBN model is considered only for binary data, which has been gener-
alized to model real-valued data (Zhang et al., 2016a), sparse count-valued data (Gan
et al., 2015d) and sequential data (Gan et al., 2015b). Similar to the way in which
deep belief networks and deep Boltzmann machines build hierarchies, one can stack
multiple SBNs to obtain a fully directed deep sigmoid belief network (DSBN). The
comparison among DBN, DBM and DSBN is illustrated in Figure 1.2. DBM is a
fully undirected graphical model, DSBN is a fully directed graphical model, while
DBN is a hybrid model, where the top two hidden layers are undirected connected,

while all the other layers are directed connected.
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FiGURE 1.3: Illustration of VAE and GAN, respectively.

1.1.8 Variational Autoencoders

In SBN, we restrict the observation and latent variables to be binary. Now, we extend
it to a more general setup. Not only the generative model being more powerful, an
inference network is further proposed to allow fast approximate inference.

Consider an observed data sample x, modeled as being drawn from pg(x|z),
with model parameters @ and latent code z. The prior distribution on the code is
denoted p(z), typically a distribution that is easy to draw from, such as isotropic
Gaussian. The posterior distribution on the code given data @ is pg(z|x), and since
this is typically intractable, it is approximated as g, (z|x), parameterized by learned
parameters ¢. Conditional distributions ¢4 (z|x) and pe(x|z) are typically designed
such that they are easily sampled and, for flexibility, modeled in terms of neural
networks (Kingma and Welling, 2013). Since z is a latent code for x, ¢4(2z|x) is also
termed a stochastic encoder, with pg(x|z) a corresponding stochastic decoder. The
observed data are assumed drawn from ¢(x), for which we do not have an explicit
form, but from which we have samples, i.e., the ensemble {x;};,_; y used for learning.
An illustration of the VAE is provided in Figure 1.3(Top).

Our goal is to learn the model pg(x) = §po(x|2)p(z)dz such that it synthesizes



samples that are well matched to those drawn from ¢(x). We simultaneously seek
to learn a corresponding encoder g4(z|x) that is both accurate and efficient to im-
plement. Samples & are synthesized via * ~ pg(x|z) with z ~ p(2); 2 ~ ¢s(2|x)
provides an efficient coding of observed «, that may be used for other purposes (e.g.,
classification or caption generation when @ is an image (Pu et al., 2016b)).

Specifically, the generative model is specified as

p(z) = N(2]0,1), pe(z|z) = f(x; 2,0), (1.13)

where the function f(«;z,0) is a suitable likelihood, modeled by a deterministic
neural network.

When doing posterior inference, we introduce an inference network, ¢4(z|x), €.g.,

19(2|z) = N (2|pe (), diag(og () , (1.14)

where ¢ is the recognition parameters, and pg(x) and o3 (z) are modeled by deter-
ministic neural networks.
The objective function is the variational lower bound on the marginal likelihood,

which can be written as
L(6,¢;x) = Ey, (z2) [~ l0g g (z]x) + log pe(, 2)] (1.15)

= =Dk (49(2[)[|p(2)) + Egy(z/a) [l0g po(z|2)] - (1.16)

The reason why we express the lower bound as (1.16) is that, (i) the first KL di-
vergence term is usually tractable, hence reducing the uncertainty of the gradients
if we calculate it explicitly; (i) we can see clearly that, the first KL term is the
regularization term, while the second term is similar to the reconstruction error term
in the traditional auto-encoder framework.

The learning of 8 and ¢ is via optimization methods, usually utilizing stochastic
gradient descent. In order to efficiently evaluate the gradient and reduce the variance
of the gradient information, the reparameterization trick is used. To be specific, since
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qe(2z|x) is specified as (1.14), hence
z = py(x) + oy(x)oe with € ~ N(0,1). (1.17)

Therefore,

Eqy(zl2) [10g po(x[2)] = Enrco1) [log po(z|pg(x) + og(x) 0 €)] . (1.18)

Now, the gradient can be evaluated as

V10.6)Eqy(zlz) [10g po(x]2)] = Enreor) [Vio.g) log pe(x|pg(x) + og(x) 0 €)] . (1.19)

The original VAEs implement a Gaussian assumption for the encoder. More re-
cently, there has been a desire to remove this Gaussian assumption. Normalizing
flow (Rezende and Mohamed, 2015) employs a sequence of invertible transforma-
tion to make the distribution of the latent codes arbitrarily flexible. This work was
followed by inverse auto-regressive flow (Kingma et al., 2016), which uses recurrent
neural networks to make the latent codes more expressive. More recently, Stein-
VAE (Pu et al., 2017b) applies Stein variational gradient descent (Liu and Wang,
2016) to infer the distribution of latent codes, discarding the assumption of a para-

metric form of posterior distribution for the latent code.
1.1.4 Generative Adversarial Networks

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) constitute an-
other recent framework for learning a generative model. Specifically, GAN consists
of a generator GG and a discriminator D that compete in a two-player minimax game,
where the generator is learned to map samples from an arbitray latent distribution to
data, while the discriminator tries to distinguish between real and generated samples.
The goal of the generator is to “fool” the discriminator by producing samples that
are as close to real data as possible. An illustration of the GAN model is provided

in Figure 1.3(Bottom). Specifically, D and G are learned as
mGin max V(D,G) = Epp)llog D(x)] + E.np.(2)[log(l — D(G(2)))], (1.20)
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where p(x) is the true data distribution, and p.(z) is usually defined to be a simple
distribution, such as the standard normal distribution. The generator G implicitly
defines a probability distribution p,(x) as the distribution of the samples G(z) ob-
tained when z ~ p.(z). For any fixed generator GG, the optimal discriminator is
D(x) = %. When the discriminator is optimal, solving this adversarial game
is equivalent to minimizing the Jenson-Shannon Divergence (JSD) between p(x) and
pg(x) (Goodfellow et al., 2014). The global equilibrium is achieved if and only if
p(x) = py(x), and the optimal value is —2log 2.

Recent extensions of GAN have focused on boosting the performance of image
generation by improving the generator (Radford et al., 2016), discriminator (Zhao
et al., 2017) or the training algorithm (Salimans et al., 2016; Arjovsky et al., 2017).
More recently, some researchers (Dumoulin et al., 2017; Donahue et al., 2017) have
employed a bidirectional network structure within the adversarial learning frame-
work, which in theory guarantees the matching of joint distributions over two do-
mains. However, non-identifiability issues are raised in Li et al. (2017a). For example,
they have difficulties in providing good reconstruction in latent variable models, or
discovering the correct pairing relationship in domain transformation tasks. It was
shown that these problems are alleviated in DiscoGAN (Kim et al., 2017), Cycle-
GAN (Zhu et al., 2017) via additional ¢, ¢ or adversarial losses.

1.1.5 Autoregressive Models

Autoregressive models such as PixelRNN (Oord et al., 2016b) and PixelCNN (Oord
et al., 2016a) instead train a network that models the conditional distribution of
every individual pixel given previous pixels. Similar ideas have been extended for
generating raw audio (Oord et al., 2016¢) and language modeling (Dauphin et al.,
2016).

Besides the popular PixelRNN model, recurrent neural networks (RNNs) also

10



serve as a popular autoregressive model that has been widely used in natural language
processing applications. Below we briefly review RNN.

An RNN is a special type of neural network that is able to handle both variable-
length input and output. By training an RNN to predict the next output in a
sequence, given all previous outputs, it can be used to model joint probability dis-
tribution over sequences. To be specific, an RNN can take as input a sequence
x = |[®1,Ts,...,x7| by recursively processing each symbol while maintaining its
internal hidden state h. At time step ¢, the RNN reads the symbol x; € R? and

updates its hidden state h, € R? by

hi = fo(x:, hi1), (1.21)

where f is a deterministic non-linear transition function, and 0 is the parameter set of
f. The transition function f can be implemented with gated activation functions such
as long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997) or gated
recurrent units (GRU) (Cho et al., 2014), introduced below. RNNs model sequences
by parameterizing a factorization of the joint sequence probability distribution as a

product of conditional probabilities such that

p(@,....xr) = | [p(@ilea), pladz) = go(hii), (1.22)

where ¢ is a function that maps the RNN hidden state h;_; to a probability distri-

bution onver possible outputs, and ¢ is the parameter set of g.

Vanilla RNN Equation (1.21) is defined as a simple non-linear hyperbolic tangent
function

h, = tanh(Wx;, + Uh;_; + b). (1.23)

Long Short-Term Memory Unfortunately, a problem with RNNs with the above for-
mulation (1.23) is that, during training, the components of the gradient vector can
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grow or decay exponentially over long sequences (Hochreiter and Schmidhuber,
1997). This problem with ezploding or vanishing gradients makes it difficult for the
RNN model to learn long-range dependencies in a sequence.

The LSTM architecture (Hochreiter and Schmidhuber, 1997) addresses this prob-
lem of learning long-term dependencies by introducing a memory cell that is able to
preserve state over long periods of time. To be specific, each LSTM unit has a cell
which has a state ¢; at time ¢. This cell can be thought of as a memory unit. Access
to this memory unit for reading or modifying it is controlled through sigmoid gates:

input gate ¢;, forget gate f;, and output gate o;. The hidden units h; are updated

as follows
i =o(W,x, + Uiy + b;) fi=0c(Wsx, + Urhy_4 + by), (1.24)
o, =0c(Wyoxy + Uhy_1 +b,), ¢ = tanh(W.x, + U h, 1 + b,) (1.25)
¢ =fiOc 1 +1,0O¢, h; = 0, ® tanh(¢;) . (1.26)

where o(-) denotes the logistic sigmoid function, and © represents the element-wise
multiply operator. The key advantage of using an LSTM unit over a traditional

neuron in an RNN is that the cell state in an LSTM unit sums activities over time.

Gated Recurrent Units The gated recurrent unit (GRU) was proposed by Cho et al.
(2014) to make each recurrent unit to adaptively capture dependencies of different
time scales. Similar to the LSTM unit, the GRU has gating units that modulate the
flow of information inside the unit, however, without using a separate memory cell.
Specifically, the GRU has two gates: the reset gate r; and the update gate z;. The

hidden units h; are updated as follows
Ty = U(Wth + Urhtfl + bT) s Zy = O'(sz.ct + Uzht,1 + bz) , (127)

iLt = tanh(th + U(rt ® h't—l) + b) s ht = (1 — Zt> ® ht_l + 2z ® iLt . (128)
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Table 1.1: Summary of thesis contributions.

Deep Generative Models Applications in Vision and Language Intelligence
SBN (Gan et al., 2015c) Binary image modeling
DPFA (Gan et al., 2015d) Topic modeling
TSBN (Gan et al., 2015b) Motion capture synthesis, Dynamic topic modeling
SCN (Gan et al., 2016b) Visual captioning
TriangleGAN (Gan et al., 2017f) Face image editing, Image-to-image translation

It has been shown that the GRU can achieve similar performances compared with

LSTM in the task of sequence modeling (Chung et al., 2014).

Variants Each of the three RNN architectures considered above can be expanded to
the Bidirectional RNN and the Multilayer RNN (also known as the stacked or deep
RNN). A Bidirectional RNN (Graves, 2013) consists of two RNNs that are run in
parallel: one on the input sequence and the other on the reverse of the input sequence.
At each time step, the hidden state of the bidirectional RNN is the concatenation of
the forward and backward hidden states. In Multilayer RNNs, the hidden state of an
RNN unit in layer ¢ is used as input to the RNN unit in layer ¢+ 1 in the same time
step (Graves, 2013). The idea here is to let the higher layers capture longer-term

dependencies of the input sequence.
1.2 Thesis Contribution

The contributions of this dissertation is summarized in Table 1.1. The first three
models are all based on SBNs, which focus on modeling the data distribution p(x)
in one domain. The fourth model is based on RNN, while the fifth model is based
on GAN. These latter two both focus on modeling the joint distribution p(z,y) in
two related domains. Below, I will briefly review each individual model listed in

Table 1.1.
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1.2.1 Deep Generative Models for Binary Image Data

Deep directed generative models are developed. The multi-layered model is designed
by stacking sigmoid belief networks, with sparsity-encouraging priors placed on the
model parameters. Learning and inference of layer-wise model parameters are im-
plemented in a Bayesian setting. By exploring the idea of data augmentation and
introducing auxiliary Pélya-Gamma variables, simple and efficient Gibbs sampling
and mean-field variational Bayes (VB) inference are implemented. To address large-
scale datasets, an online version of VB is also developed. Experimental results are
presented for three publicly available datasets: MNIST, Caltech 101 Silhouettes and
OCR letters.

1.2.2  Deep Generative Models for Documents

A new framework for topic modeling is developed, based on deep graphical models,
where interactions between topics are inferred through deep latent binary hierar-
chies. The proposed multi-layer model employs a deep sigmoid belief network or
restricted Boltzmann machine, the bottom binary layer of which selects topics for
use in a Poisson factor analysis model. Under this setting, topics live on the bottom
layer of the model, while the deep specification serves as a flexible prior for revealing
topic structure. Scalable inference algorithms are derived by applying Bayesian con-
ditional density filtering algorithm, in addition to extending recently proposed work
on stochastic gradient thermostats. Experimental results on several corpora show
that the proposed approach readily handles very large collections of text documents,
infers structured topic representations, and obtains superior test perplexities when

compared with related models.
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1.2.83 Deep Generative Models for Sequential Data

Deep dynamic generative models are developed to learn sequential dependencies in
time-series data. The multi-layered model is designed by constructing a hierarchy of
temporal sigmoid belief networks (TSBNs), defined as a sequential stack of sigmoid
belief networks (SBNs). Each SBN has a contextual hidden state, inherited from
the previous SBNs in the sequence, and is used to regulate its hidden bias. Scalable
learning and inference algorithms are derived by introducing a recognition model that
yields fast sampling from the variational posterior. This recognition model is trained
jointly with the generative model, by maximizing its variational lower bound on the
log-likelihood. Experimental results on bouncing balls, polyphonic music, motion
capture, and text streams show that the proposed approach achieves state-of-the-art

predictive performance, and has the capacity to synthesize various sequences.
1.2.} Deep Generative Models for Visual Captioning

A Semantic Compositional Network (SCN) is developed for image captioning, in
which semantic concepts (i.e., tags) are detected from the image, and the probability
of each tag is used to compose the parameters in a long short-term memory (LSTM)
network. The SCN extends each weight matrix of the LSTM to an ensemble of
tag-dependent weight matrices. The degree to which each member of the ensemble
is used to generate an image caption is tied to the image-dependent probability of
the corresponding tag. In addition to captioning images, we also extend the SCN
to generate captions for video clips. We qualitatively analyze semantic composition
in SCNs, and quantitatively evaluate the algorithm on three benchmark datasets:
COCO, Flickr30k, and Youtube2Text. Experimental results show that the proposed
method significantly outperforms prior state-of-the-art approaches, across multiple

evaluation metrics.
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1.2.5 Deep Generative Models for Joint Distribution Matching

A Triangle Generative Adversarial Network (A-GAN) is developed for semi-supervised
cross-domain joint distribution matching, where the training data consists of samples
from each domain, and supervision of domain correspondence is provided by only
a few paired samples. A-GAN consists of four neural networks, two generators and
two discriminators. The generators are designed to learn the two-way conditional
distributions between the two domains, while the discriminators implicitly define a
ternary discriminative function, which is trained to distinguish real data pairs and
two kinds of fake data pairs. The generators and discriminators are trained together
using adversarial learning. Under mild assumptions, in theory the joint distribu-
tions characterized by the two generators concentrate to the data distribution. In
experiments, three different kinds of domain pairs are considered, image-label, image-
image and image-attribute pairs. Experiments on semi-supervised image classifica-
tion, image-to-image translation and attribute-based image generation demonstrate

the superiority of the proposed approach.
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2

Learning Sigmoid Belief Networks

In this chapter, I will present sigmoid belief networks for representation learning.
Both Gibbs sampling and mean-field variational approximation are implemented for
efficient learning and inference in a fully Bayesian setup, by using the idea of data

augmentation.
2.1 Introduction

The Deep Belief Network (DBN) (Hinton et al., 2006) and Deep Boltzmann Ma-
chine (DBM) (Salakhutdinov and Hinton, 2009a) are two popular deep probabilistic
generative models that provide state-of-the-art results in many problems. These
models contain many layers of hidden variables, and utilize an undirected graphi-
cal model called the Restricted Boltzmann Machine (RBM) (Hinton, 2002) as the
building block. A nice property of the RBM is that gradient estimates on the model
parameters are relatively quick to calculate, and stochastic gradient descent provides
relatively efficient inference. However, evaluating the probability of a data point
under an RBM is nontrivial due to the computationally intractable partition func-
tion, which has to be estimated, for example using an annealed importance sampling
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algorithm (Salakhutdinov and Murray, 2008).

A directed graphical model that is closely related to these models is the Sigmoid
Belief Network (SBN) (Neal, 1992). The SBN has a fully generative process and
data are readily generated from the model using ancestral sampling. However, it
has been noted that training a deep directed generative model is difficult, due to the
“explaining away” effect. Hinton et al. (2006) tackle this problem by introducing the
idea of “complementary priors” and show that the RBM provides a good initialization
to the DBN, which has the same generative model as the SBN for all layers except the
two top hidden layers. In the work presented here we directly deal with training and
inference in SBNs (without RBM initialization), using recently developed methods
in the Bayesian statistics literature.

Previous work on SBNs utilizes the ideas of Gibbs sampling (Neal, 1992) and mean
field approximations (Saul et al., 1996). Recent work focuses on extending the wake-
sleep algorithm (Hinton et al., 1995b) to training fast variational approximations for
the SBN (Mnih and Gregor, 2014). However, almost all previous work assumes no
prior on the model parameters which connect different layers. An exception is the
work of Kingma and Welling (2013), but this is mentioned as an extension of their
primary work. Previous Gibbs sampling and variational inference procedures are
implemented only on the hidden variables, while gradient ascent is employed to learn
good model parameter values. The typical regularization on the model parameters
is early stopping and /or ¢? regularization. In an SBN, the model parameters are not
straightforwardly locally conjugate, and therefore fully Bayesian inference has been
difficult.

The work presented here provides a method for placing priors on the model pa-
rameters, and presents a simple Gibbs sampling algorithm, by extending recent work
on data augmentation for Bayesian logistic regression (Polson et al., 2013a). More

specifically, a set of Pdélya-Gamma variables are used for each observation, to re-
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formulate the logistic likelihood as a scale mixture, where each mixture component
is conditionally normal with respect to the model parameters. Efficient mean-field
variational learning and inference are also developed, to optimize a data-augmented
variational lower bound; this approach can be scaled up to large datasets. Utiliz-
ing these methods, sparsity-encouraging priors are placed on the model parameters
and the posterior distribution of model parameters is estimated (not simply a point
estimate). Based on extensive experiments, we provide a detailed analysis of the

performance of the proposed method.

2.2 Model formulation
2.2.1 Sigmoid Belief Networks
Assume we have N binary visible vectors, the nth of which is denoted v,, € {0,1}”.

As described in Section 1.1.2, an SBN is a Bayesian network that models each v,, in

terms of binary hidden variables h,, € {0, 1}¥ and weights W € R7*E as

where o(-) is the logistic function defined as o(x) = 1/(1+exp(—2)), vVn = [Vin, -+, V],

h,n = [hln,...7hKn]T, W = ['th...,’U)J]T, C = [Cl,..., CJ]T and b = [bh...,b}(]T

are bias terms.
2.2.2  Autoregressive Structure

Instead of assuming that the visible variables in an SBN are conditionally indepen-
dent given the hidden units, a more flexible model can be built by using an au-
toregressive structure. The autoregressive sigmoid belief network (ARSBN) (Gregor
et al., 2014) is an SBN with within-layer dependency captured by a fully connected

directed acyclic graph, where each unit x; can be predicted by its parent units x;,
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defined as {z1,...,z;_1}. To be specific,

p(vjn = 1k, v<j,) = U(w;hn + sz<jv<j7n + ¢) (2.3)
P(hin = 1hopn) = U(u£<kh<k,n + by) (2.4)
where S = [s1,...,8;]" and U = [uy,...,ux|" are a lower triangular matrix that

contains the autoregressive weights within layers, while W is utilized to capture the
dependencies between different layers. If no hidden layer exists, we obtain the fully
visible sigmoid belief network (Frey, 1998), in which accurate probabilities of test
data points can be calculated.

In the work presented here, only stochastic autoregressive layers are considered,
while Gregor et al. (2014) further explore the utilization of deterministic hidden
layers. Furthermore, instead of using the simple linear autoregressive structure, one
can increase the representational power of the model by using more-complicated
autoregressive models, such as the work by Larochelle and Murray (2011), where

each conditional p(v;,|v<;,) is modeled by a neural network.
2.2.3 Deep Sigmoid Belief Networks

Similar to the way in which deep belief networks and deep Boltzmann machines
build hierarchies, one can stack additional hidden layers to obtain a fully directed
deep sigmoid belief network (DSBN). Consider a deep model with L layers of hidden
variables. To generate a sample, we begin at the top, layer L. For each layer be-
low, activation h\ is formed by a sigmoid transformation of the layer above h(t+1)

weighted by WU+ We repeat this process until the observation is reached. There-

fore, the complete generative model can be written as

L-1

p(Vn; Ba) = p(valBD)p(RE) | [ p(RY[RIH). (2.5)

=1
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FIGURE 2.1: Graphical model for the deep SBN with autoregressive structure.

Let {h'Y )

iy Pony ooy hg?m} represent the set of hidden units for observation n in layer

[. For the top layer, the prior probability can be written as p(h,&ﬁ) =1)= a(c,(fﬂ)),

where cl({LH) € R. Defining v, = h,(qo), conditioned on the hidden units hg), the

hidden units at layer [ — 1 are drawn from

p(hi, VIR = o (W) TR + ). (2.6)
where WO = [wgl), . ,wy()H]T connects layers [ and [—1 and ¢ = [cgl), . ,cg?H]T

is the bias term.
Figure 2.1 shows the graphical model for the deep SBN with autoregressive struc-
ture. S® and U contain the autoregressive weights within layers, while W is

utilized to capture the dependencies between different layers.
2.2.4 Bayesian sparsity shrinkage prior

The learned features are often expected to be sparse. In imagery, for example,
features learned at the bottom layer tend to be localized, oriented edge filters which
are similar to the Gabor functions known to model V1 cell receptive fields (Lee et al.,
2008).

Under the Bayesian framework, sparsity-encouraging priors can be specified in a
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principled way. Some canonical examples are the spike-and-slab prior, the Student’s-
t prior, the double exponential prior and the horseshoe prior (see Polson and Scott
(2012) for a discussion of these priors). The three parameter beta normal (TPBN)
prior (Armagan et al., 2011), a typical global-local shrinkage prior, has demonstrated
better (mixing) performance than the aforementioned priors, and thus is employed
in this paper. The TPBN shrinkage prior can be expressed as scale mixtures of
normals. If W, ~ TPBN(a,b, ¢), where j = 1,...,J.k =1,..., K, (leaving off the

dependence on the layer [, for notational convenience) then

Wik ~ N(0, Cjk) ) (2.7)
Gk ~ Gamma(a, i) , &k ~ Gammal(b, ¢y) ,
¢r ~ Gamma(1/2,w), w ~ Gamma(1/2,1).

When a = b = %, the TPBN recovers the horseshoe prior. For fixed values of a and
b, decreasing ¢ encourages more support for stronger shrinkage. In high-dimensional
settings, ¢ can be fixed at a reasonable value to reflect an appropriate expected
sparsity rather than inferring it from data.

Finally, to build up the fully generative model, commonly used isotropic normal
prior are imposed on the bias term b and ¢, i.e. b ~ N(0,15Ix),c ~ N(0,v.1,).

Note that when performing model learning, we truncate the number of hidden
units at each layer at K, which may be viewed as an upper bound within the model
on the number of units at each layer. With the aforementioned shrinkage on W, the
model has the capacity to infer the subset of units (possibly less than K) actually

needed to represent the data.
2.3 Learning and inference

In this section, Gibbs sampling and mean field variational inference are derived for

the sigmoid belief networks, based on data augmentation. From the perspective of

22



learning, we desire distributions on the model parameters {W®} and {c®}, and
distributions on the data-dependent {hg)} are desired in the context of inference.
The extension to ARSBN is straightforward and hence omitted. We again omit the

layer index [ in the discussion below.
2.3.1 Gibbs sampling

Define V = [vy,...,vy] and H = [hy,...,hy]. From recent work for the Pélya-
Gamma data augmentation strategy (Polson et al., 2013a), that is, if v ~ PG(b,0),

b > 0, then

(ew)a —b kb * —yp2 /2
m =27 . e p(v)dv, (2-8)

where k = a — b/2. Properties of the Pélya-Gamma variables are summarized in
Section 2.7.1. Therefore, the data-augmented joint posterior of the SBN model can

be expressed as

p(W,H,b,c,7? 7V|V) (2.9)

1 1
o exp {Z(% = D] b+ c) = o) (w] b+ cj)2}

jn
1 L )0 0) (1)
exp 4 > (hin = 5)bk = 52 b ¢ po(r 41, Wobe),
k,n

where ¥ e R7”*N and () € RX are augmented random variables drawn from
the Pélya-Gamma distribution. The term po(7(?, v, Wb, ¢) contains the prior
information of the random variables within. Let p(-|—) represent the conditional
distribution given other parameters fixed, then the conditional distributions used in

the Gibbs sampling are as follows.
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For v, ~®M: The conditional distribution of () is

1
11 exp (~ 5wy + ) - PGOLILO

= PG(L,w, h, +¢;), (2.10)

where PG(-,-) represents the Pélya-Gamma distribution. Similarly, we can obtain
p( =) = PG(1, by).

To draw samples from the Pélya-Gamma distribution, two strategies are utilized:
(7) using rejection sampling to draw samples from the closely related exponentially
tilted Jacobi distribution (Polson et al., 2013a); (4i) using a truncated sum of random
variables from the Gamma distribution and then match the first moment to keep the
samples unbiased (Zhou et al., 2012b). Typically, a truncation level of 20 works well
in practice.

For H: The sequential update of the local conditional distribution of H is
p(hgn|—) = Ber(o(dg,)), where

J
2 (wjk + %n 21/1 A Wik + wjzk)) , (2.11)

l\')lr—~

din, = by + 'w,Ivn —

where @Dj\ﬁ = 'ijhn — Wjkhi, + ¢j. Note that w;, and w; represent the kth column
and the transpose of the jth row of W, respectively. The difference between an SBN
and an RBM can be seen more clearly from the sequential update. Specifically, in an
RBM, the update of hy, only contains the first two terms, which implies the update
of the hy,, are independent of each other. In the SBN, the existence of the third term
demonstrates clearly the posterior dependencies between hidden units. Although the
rows of H are correlated, the columns of H are independent, therefore the sampling

of H is still efficient.
For W: The prior is a TPBN shrinkage prior with po(w;) = N(0, diag(¢;)), then
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we have p(w;|—) = N(p;,3;), where

N -1
3 = [Z Vi b +diag<cj1>] : (2.12)
n=1
N 1
0
B = X [Z(an 5 j%('n))hn] . (2.13)
n=1

The update of the bias term b and ¢ are similar to the above equation.

For TPBN shrinkage: One advantage of this hierarchical shrinkage prior is
the full local conjugacy that allows the Gibbs sampling easily implemented. Specif-
ically, the following posterior conditional distribution can be achieved: (1) (jx|— ~
GTG(0,28k, W3); (2) &il— ~ Gamma(1, (i, + ér); (3) ¢dr|— ~ Gamma(3J + 5, w +
Z}]=1 &in); (4) wl— ~ Gamma(3K + 3,1+ S ér), where GZG denotes the gener-

alized inverse Gaussian distribution.
2.3.2  Mean field variational Bayes

Using the VB inference with the traditional mean field assumption, we approximate
the posterior distribution with @ = [T, qu;, (wix) [1;,, @n;. (hjn)q%(_g) (7](-2)); for no-

tational simplicity the terms concerning b, ¢, ¥") and the parameters of the TPBN

shrinkage prior are omitted. The variational lower bound can be obtained as

L = {ogp(VIW,H, ¢)) + (log p(W)) + (log p(H|b))
— (log ¢(W)) — logq(H)), (2.14)

where () represents the expectation w.r.t. the variational approximate posterior.
Note that {logp(V|—)) = >, (logp(vjs|—)), and each term inside the summa-
tion can be further lower bounded by using the augmented Poélya-Gamma variables.

Specifically, defining ;, = w h,, + ¢;, we can obtain

Qogp(vjn|=)) = —log2 + (vjn — 1/2)(Wjn)
LD + o o)) — o (D)), (215)
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by using (2.8) and Jensen’s inequality. Therefore, the new lower bound £’ can be
achieved by substituting (2.15) into (4.6). Note that this is a looser lower bound
compared with the original lower bound £, due to the data augmentation. However,
closed-form coordinate ascent update equations can be obtained, shown below.

For v ~(M: optimizing £ over q(’yj(-g)), we have

1
0l exp (~ 500 ) PG

- PG (1, NS ) . (2.16)

Similarly, we can obtain p(y,gl)|—) = PG(1,4/¢b?)). In the update of other varia-

tional parameters, only the expectation of 'y](-g) is needed, which can be calculated by

0 V@D
<’Yg('n)> = 2@ tanh(~—

in the exponential family, hence the update equations can be derived from the Gibbs

). The variational distribution for other parameters are

sampling, which are straightforward and provided in Section 2.7.2.

In order to calculate the variational lower bound, the augmented Polya-Gamma
variables are integrated out, and the expectation of the logistic likelihood under the
variational distribution is estimated by Monte Carlo integration algorithm. In the
experiments 10 samples are used and were found sufficient in all cases considered.

The computational complexity of the above inference is O(NK?), where N is
the total number of training data points. Every iteration of VB requires a full pass
through the dataset, which can be slow when applied to large datasets. Therefore,
an online version of VB inference is developed, building upon the recent online im-
plementation of latent Dirichlet allocation (Hoffman et al., 2013a). In online VB,
stochastic optimization is applied to the variational objective. The key observation
is that the coordinate ascent updates in VB precisely correspond to the natural gra-

dient of the variational objective. To implement online VB, we subsample the data,
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compute the gradient estimate based on the subsamples and follow the gradient with

a decreasing step size.
2.3.3 Learning deep networks using SBNs

Once one layer of the deep network is trained, the model parameters in that layer are
frozen (at the mean of the inferred posterior) and we can utilize the inferred hidden
units as the input “data” for the training of the next higher layer. This greedy layer-
wise pre-training algorithm has been shown to be effective for DBN (Hinton et al.,
2006) and DBM (Salakhutdinov and Hinton, 2009a) models, and is guaranteed to
improve the data likelihood under certain conditions. In the training of a deep SBN,
the same strategy is employed. After finishing pre-training (sequentially for all the
layers), we then “un-freeze” all the model parameters, and implement global training
(refinement), in which parameters in the higher layer now can also affect the update
of parameters in the lower layer.

Discriminative fine-tuning (Salakhutdinov and Hinton, 2009a) is implemented in
the training of DBM by using label information. In the work presented here for the
SBN, we utilize label information (when available) in a multi-task learning setting
(like in Bengio et al. (2013)), where the top-layer hidden units are generated by
multiple sets of bias terms, one for each label, while all the other model parameters
and hidden units below the top layer are shared. This multi-task learning is only

performed when generating samples from the model.
2.4 Related work

The SBN was proposed by Neal (1992), and in the original paper a Gibbs sampler
was proposed to do inference. A natural extension to a variational approximation
algorithm was proposed by Saul et al. (1996), using the mean field assumption. A

Gaussian-field (Barber and Sollich, 1999) approach was also used for inference, by
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making Gaussain approximations to the unit input. However, due to the fact that
the model is not locally conjugate, all the methods mentioned above are only used for
inference of distributions on the hidden variables H, and typically model parameters
W are learned by gradient descent.

Another route to do inference on SBNs are based on the idea of Helmholtz ma-
chines (Dayan et al., 1995), which are multi-layer belief networks with recognition
models, or inference networks. These recognition models are used to approximate
the true posterior. The wake-sleep algorithm (Hinton et al., 1995b) was first pro-
posed to do inference on such recognition models. Recent work focuses on training
the recognition models by maximizing a variational lower bound on the marginal log
likelihood (Mnih and Gregor, 2014; Gregor et al., 2014; Kingma and Welling, 2013;
Rezende et al., 2014).

In the work reported here, we focus on providing a fully Bayesian treatment on
the “global” model parameters and the “local” data-dependent hidden variables. An
advantage of this approach is the ability to impose shrinkage-based (near) sparsity
on the model parameters. This sparsity helps regularize the model, and also aids
in interpreting the learned model. The idea of Pélya-Gamma data augmentation
was first proposed to do inference on Bayesian logistic regression (Polson et al.,
2013a), and later extended to the inference of negative binomial regression (Zhou
et al., 2012b), logistic-normal topic models (Chen et al., 2013), and discriminative
relational topic models (Chen et al., 2014a). The work reported here serves as another
application of this data augmentation strategy, and a first implementation of analysis

of a deep-learning model in a fully Bayesian framework.
2.5 Experiments

We present experimental results on three publicly available binary datasets: MNIST,

Caltech 101 Silhouettes, and OCR letters. To assess the performance of SBNs trained
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FIGURE 2.2: Performance on MNIST. (Left) Training data. (Middle) Averaged
synthesized samples. (Right) Learned features at the bottom layer.

using the proposed method, we show the samples generated from the model and

report the average log probability that the model assigns to a test datum.
2.5.1 FExperiment setup

For all the experiments below, we consider a one-hidden-layer SBN with K = 200
hidden units, and a two-hidden-layer SBN with each layer containing K = 200 hidden
units. The autoregressive version of the model is denoted ARSBN. The fully visible
sigmoid belief network without any hidden units is denoted FVSBN.

The SBN model is trained using both Gibbs sampling and mean field VB, as well
as the proposed online VB method. The learning and inference discussed above is
almost free of parameter tuning; the hyperparameters settings are given in Section
2. Similar reasonable settings on the hyperparameters yield essentially identical
results. The hidden units are initialized randomly and the model parameters are
initialized using an isotropic normal with standard deviation 0.1. The maximum
number of iterations for VB inference is set to 40, which is large enough to observe
convergence. Gibbs sampling used 40 burn-in samples and 100 posterior collection
samples; while this number of samples is clearly too small to yield sufficient mixing
and an accurate representation of the posteriors, it yields effective approximations to

parameter means, which are used when presenting results. For online VB, the mini-
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Table 2.1: Log probability of test data on MNIST dataset.

Model Dim Test log-prob.
SBN (online VB) 25 —138.34
RBM (CD3) (Salakhutdinov and Murray, 2008) 25 —143.20
SBN (online VB) 200 —118.12
SBN (VB) 200 —116.96
SBN.multi (VB) 200 —113.02
SBN.multi (VB) 200 — 200 —110.74
FVSBN (VB) - —100.76
ARSBN (VB) 200 ~102.11
ARSBN (VB) 200 — 200 ~101.19
SBN (Gibbs) 200 ~94.30
SBN (NVIL) (Mnih and Gregor, 2014) 200 —113.1
SBN (NVIL) (Mnih and Gregor, 2014) 200 — 200 ~99.8
DBN (Salakhutdinov and Murray, 2008) 500 — 2000 —86.22
DBM (Salakhutdinov and Hinton, 2009a) 500 — 1000 —84.62

batch size is set to 5000 with a fixed learning rate of 0.1. Local parameters were
updated using 4 iterations per mini-batch, and results are shown over 20 epochs.

The properties of the deep model were explored by examining E, (5 [v]. Given
the second hidden layer, the mean was estimated by using Monte Carlo integration.
Given A, we sample ) ~ p(hRM|h?) and v ~ p(v|hY), repeat this procedure
1000 times to obtain the final averaged synthesized samples.

The test data log probabilities under VB inference are estimated using the varia-
tional lower bound. Evaluating the log probability using the Gibbs output is difficult.
For simplicity, the harmonic mean estimator is utilized. As the estimator is biased
(Wallach et al., 2009), we refer to the estimate as an upper bound.

ARSBN requires that the observation variables are put in some fixed order. In
the experiments, the ordering was simply determined by randomly shuffling the ob-
servation vectors, and no optimization of the ordering was tried. Repeated trials

with different random orderings gave empirically similar results.
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2.5.2 Binarized MNIST dataset

We conducted the first experiment on the MNIST digit dataset which contains 60, 000
training and 10, 000 test images of ten handwritten digits (0 to 9), with 28 x 28 pixels.
The binarized version of the dataset is used according to Murray and Salakhutdinov
(2009). Analysis was performed on 10,000 randomly selected training images for
Gibbs and VB inference. We also examine the online VB on the whole training set.
The results for MNIST, along with baselines from the literature are shown in
Table 2.1. We report the log probability estimates from our implementation of
Gibbs sampling, VB and online VB using both the SBN and ARSBN model. “Dim”
represents the number of hidden units in each layer, starting with the bottom one.
(=) taken from . SBN.multi denotes SBN trained in the multi-task learning setting.
First, we examine the performance in a low-dimensional model, with K = 25,
and the results are shown in Table 2.1. All VB methods give similar results, so only
the result from the online method is shown for brevity. VB SBN shows improved
performance over an RBM in this size model (Salakhutdinov and Murray, 2008).
Next, we explore an SBN with K = 200 hidden units. Our methods achieve sim-
ilar performance to the Neural Varitional Inference and Learning (NVIL) algorithm
(Mnih and Gregor, 2014), which is the current state of the art for training SBNs.
Using a second hidden layer, also with size 200, gives performance improvements
in all algorithms. In VB there is an improvement of 3 nats for the SBN model when
a second layer is learned. Furthermore, the VB ARSBN method gives a test log
probability of —101.19. The current state of the art on this size deep sigmoid belief
network is the NVIL algorithm with —99.8, which is quantitatively similar to our
results. The online VB implementation gives lower bounds comparable to the batch
VB, and will scale better to larger data sizes.

The TPBN prior infers the number of units needed to represent the data. The
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FiGURrE 2.3: The impact of the number of hidden units on the average variational
lower bound of test data under the one-hidden-layer SBN.

impact on the number of hidden units on the test set performance is shown in Figure
2.3. The models learned using 100, 200 and 500 hidden units achieve nearly identical
test set performance, showing that our methods are not overfitting the data as the
number of units increase. All models with K > 100 typically utilize 81 features.
Thus, the TPBN prior gives “tuning-free” selection on the hidden layer size K. The
learned features are shown in Figure 2.2. These features are sparse and consistent
with results from sparse features learning algorithms (Lee et al., 2008).

The generated samples for MNIST are presented in Figure 2.2. The synthesized
digits appear visually good and match the true data well.

We further demonstrate the ability of the model to predict missing data. For each
test image, the lower half of the digit is removed and considered as missing data.
Reconstructions are shown in Figure 2.4, and the model produces good completions.
Because the labels of the images are uncertain when they are partially observed, the
model can generate different digits than the true digit (see the transition from 9 to

0, 7 to 9 etc.).
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FIGURE 2.4: Missing data prediction. For each subfigure, (Top) Original data.
(Middle) Hollowed region. (Bottom) Reconstructed data.

FIGURE 2.5: Performance on Caltech 101 Silhouettes. (Left) Training data. (Mid-
dle) Synthesized samples. (Right) Features at the bottom layer.

2.5.83 Caltech 101 Silhouettes dataset

The second experiment is based on the Caltech 101 Silhouettes dataset (Marlin
et al., 2010), which contains 6364 training images and 2307 test images. Estimated
log probabilities are reported in Table 2.2.

In this dataset, adding the second hidden layer to the VB SBN greatly improves
the lower bound. Figure 2.6 demonstrates the effect of the deep model on learning.
The first hidden layer improves the lower bound quickly, but saturates. When the
second hidden layer is added, the model once again improves the lower bound on the
test set. Global training (refinement) further enhances the performance. The two-

layer model does a better job capturing the rich structure in the 101 total categories.
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Table 2.2: Log probability of test data on Caltech 101 Silhouettes dataset.

Model Dim Test log-prob.
SBN (VB) 200 —136.84
SBN (VB) 200 — 200 —125.60
FVSBN (VB) — —96.40
ARSBN (VB) 200 —96.78
ARSBN (VB) 200 — 200 —97.57
RBM (Cho et al., 2013) 500 —114.75
RBM (Cho et al., 2013) 4000 —107.78
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FIGURE 2.6: Average variational lower bound obtained from the SBN 200 — 200
model on the Caltech 101 Silhouettes dataset.

For the simple dataset (MNIST with 10 categories, OCR letters with 26 categories,
discussed below), this large gap is not observed.

Remarkably, our implementation of FVSBN beats the state-of-the-art results on
this dataset (Cho et al., 2013) by 10 nats. Figure 2.5 shows samples drawn from the

trained model; different shapes are synthesized and appear visually good.
2.5.4 OCR letters dataset

The OCR letters dataset contains 16 x 8 binary pixel images of 26 letters in the
English alphabet. The dataset is split into 42, 152 training and 10, 000 test examples.
Results are reported in Table 2.3. The proposed ARSBN with K = 200 hidden

units achieves a lower bound of —37.97. The state-of-the-art here is a DBM with
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Table 2.3: Log probability of test data on OCR letters dataset.

Model Dim Test log-prob.
SBN (online VB) 200 —48.71
SBN (VB) 200 —48.20
SBN (VB) 200 — 200 —47.84
FVSBN (VB) - —39.71
ARSBN (VB) 200 —37.97
ARSBN (VB) 200 — 200 —38.56
SBN (Gibbs) 200 —40.95
DBM (Salakhutdinov and Larochelle, 2010) 2000 — 2000 —34.24

2000 hidden units in each layer (Salakhutdinov and Larochelle, 2010). Our model
gives results that are only marginally worse using a network with 100 times fewer

connections.
2.6  Discussion

A simple and efficient Gibbs sampling algorithm and mean field variational Bayes
approximation are developed for learning and inference of model parameters in the
sigmoid belief networks. This has been implemented in a novel way by introducing
auxiliary Pélya-Gamma variables. Several encouraging experimental results have
been presented, enhancing the idea that the deep learning problem can be efficiently
tackled in a fully Bayesian framework.

While this work has focused on binary observations, one can model real-valued
data by building latent binary hierarchies as employed here, and touching the data at
the bottom layer by a real-valued mapping, as has been done in related RBM models
(Salakhutdinov et al., 2013). Furthermore, the logistic link function is typically
utilized in the deep learning literature. The probit function and the rectified linearity
are also considered in the nonlinear Gaussian belief network (Frey and Hinton, 1999).
Under the Bayesian framework, by using data augmentation (Polson et al., 2011),
the max-margin link could be utilized to model the non-linearities between layers

when training a deep model.
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2.7 Supplementary Material

2.7.1 Properties of Polya-Gamma distribution

A random variable X has a Pélya-Gamma distribution (Polson et al., 2013a) with
parameters b > 0 and ¢ € R, denoted X ~ PG(b, ¢), if

(2.17)

Z (k—1/2)2 +02/(47r2)

1
2m

where each g ~ Ga(b, 1) is an independent gamma random variable. We have

20 ec+1

E[X] — zﬂtanh(cp) b (ec_ 1) | (2.18)

A key observation is that binomial likelihoods parametrized by log-odds can
be written as mixtures of Gaussians with respect to a Pdélya-Gamma distribution.

Specifically, if v ~ PG(b,0), b > 0, then

ew 2
(1(+ iw) -2 WL e p(y)dy, (2.19)

where © = a — b/2. And we have y|i) ~ PG(b,v). Proof is given in Polson et al.
(2013a), Section 3.

The generation of the Pélya-Gamma variables is detailed in Polson et al. (2013a),
Section 4. Other approximate methods for generation are discussed in the supple-

mental material of Zhou et al. (2012b) and Chen et al. (2013).
2.7.2 VB update equations

The VB update equations for the SBN model are listed below.

For 7 ~):

a(1)) = PG (14w b+ )% ) (2.20)

08 = 76 (1) ) (221)
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For H: q(hy,) = Ber(o(dyy,)), where

dn = (bpy + (w] v,)

[\.')Ib—

where @DJ\Z = ijhn — Wjkhgn + ¢;.
For W: ¢(w,;) = N(p;,%;), where

N

D k) + diag((C; 1>)] ,

n=1

Y=

J

N

= | D5 - <Cj><7§-2)>)<hn>] .

For TPBN shrinkage:
q(Gre) = GIZG(0, 2(&w), W)
q(&%) = Gamma(lv <Cjk> + <¢k>) ’

q(¢r) = Gamma <1J + - {wy + Z<§]k>>

¢(w) = Gamma (%K + -, 1+ Z<¢k>)

37

i <<w3k> T <%n 2<¢>nw]k> + <w]k>>> ;

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)



3

Deep Poisson Factor Analysis for Topic Modeling

In this chapter, I will present deep Poisson factor analysis for topic modeling. The
proposed multi-layer model employs a deep sigmoid belief network or restricted Boltz-
mann machine, the bottom binary layer of which selects topics for use in a Poisson
factor analysis model. Scalable inference algorithms are derived by applying Bayesian

conditional density filtering algorithm, and stochastic gradient thermostats.
3.1 Introduction

Considerable research effort has been devoted to developing probabilistic models for
documents. In the context of topic modeling, a popular approach is latent Dirichlet
allocation (LDA) (Blei et al., 2003), a directed graphical model that aims to discover
latent topics (word distributions) in collections of documents that are represented in
bag-of-words form. Recent work focuses on linking observed word counts in a docu-
ment to latent nonnegative matrix factorization, via a Poisson distribution, termed
Poisson factor analysis (PFA) (Zhou et al., 2012a). Different choices of priors on the
latent nonnegative matrix factorization can lead to equivalent marginal distributions

to LDA, as well as to the Focused Topic Model (FTM) of Williamson et al. (2010).
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Additionally, hierarchical (“deep”) tree-structured topic models have been de-
veloped by using structured Bayesian nonparametric priors, including the nested
Chinese restaurant process (nCRP) (Blei et al., 2004), and the recently proposed
nested hierarchical Dirichlet process (nHDP) (Paisley et al., 2015). The nCRP is
limited because it requires that each document select topics from a single path in
a tree, while the nHDP allows each document to access the entire tree by defining
priors over a base tree. However, the relationship between two paths in these models
is only explicitly given on shared parent nodes.

Another alternative for topic modeling is to develop undirected graphical models,
such as the Replicated Softmax Model (RSM) (Salakhutdinov and Hinton, 2009b),
based on a generalization of the restricted Boltzmann machine (RBM) (Hinton,
2002). Also closely related to the RBM is the neural autoregressive density esti-
mator (DocNADE) (Larochelle and Lauly, 2012), a neural-network-based method,
that has been shown to outperform the RSM.

Deep models, such as the Deep Belief Network (DBN) (Hinton et al., 2006), the
Deep Boltzmann Machine (DBM) (Salakhutdinov and Hinton, 2009a), and layered
Bayesian networks (Kingma and Welling, 2013; Mnih and Gregor, 2014; Rezende
et al., 2014; Gan et al., 2015c) are becoming popular, as they consistently obtain
state-of-the-art performances on a variety of machine learning tasks. A popular
theme in this direction of work is to extend shallow topic models to deep counterparts.
In such a setting, documents arise from a cascade of layers of latent variables. For
instance, DBNs and DBMs have been generalized to model documents by utilizing
the RBM as a building block (Hinton and Salakhutdinov, 2011; Srivastava et al.,
2013).

Combining ideas from traditional Bayesian topic modeling and deep models, we
propose a new deep generative model for topic modeling, in which the Bayesian PFA
is employed to interact with the data at the bottom layer, while the Sigmoid Belief
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Network (SBN) (Neal, 1992), a directed graphical model closely related to the RBM,
is utilized to buildup binary hierarchies. Furthermore, our model is not necessarily
restricted to SBN modules, and it is shown how an undirected model such as the
RBM can be incorporated into the framework as well.

Compared with the original DBN and DBM, our proposed model: (i) tends to
infer a more compact representation of the data, due to the “explaining away” effect
described by Hinton et al. (2006); (iz) allows for more direct exploration of the effect
of a single deep hidden node through ancestral sampling; and (ii7) can be easily
incorporated into larger probabilistic models in a modular fashion. Compared with
the nCRP and nHDP, our proposed model only infers topics at the bottom layer, but
defines a flexible prior to capture high-order relationships between topics via a deep
binary hierarchical structure. In practice, this translates into better perplexities and
very interesting topic correlations, although not in a tree representation as in nCRP
or nHDP.

Another important contribution we present is to develop two scalable Bayesian
learning algorithms for our model: one based on the recently proposed Bayesian
conditional density filtering (BCDF) algorithm (Guhaniyogi et al., 2014), and the
other based on the stochastic gradient Nose-Hoover thermostats (SGNHT) algorithm
(Ding et al., 2014). We extend the SGNHT by introducing additional thermostat
variables into the dynamic system, increasing the stability and convergence when

compared to the original SGNHT algorithm.

3.2 Model Formulation

3.2.1 Poisson Factor Analysis

Given a discrete matrix X € Z2*N containing counts from N documents and P
words, Poisson factor analysis (Zhou et al., 2012a) assumes the entries of X are

summations of K < oo latent counts, each produced by a latent factor (in the case
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of topic modeling, a hidden topic). We represent X using the following factor model

X = Pois(®(© o HV)) | (3.1)

where @ is the factor loading matrix. Each column of ®, ¢, € Ap, encodes the rel-
ative importance of each word in topic k, with Ap representing the P-dimensional
simplex. © € ]Rf *N'is the factor score matrix. Each column, 6,,, contains relative
topic intensities specific to document n. H® e {0, 115>V is a latent binary feature
matrix. Each column, h,(ql), defines a sparse set of topics associated with each docu-
ment. For the single-layer PFA | the use of the superscript (1) on rY is unnecessary;
we introduce this notation here in preparation for the subsequent deep model, for
which A% will correspond to the associated first-layer latent binary units. The sym-
bol o represents the Hadamard, or element-wise multiplication of two matrices. The
factor scores for document n are 6,, o h,(ll).

A wide variety of algorithms have been developed by constructing PFAs with
different prior specifications (Zhou and Carin, 2015). If H® is an all-ones matrix,
LDA is recovered from (3.1) by employing Dirichlet priors on ¢, and 0, for k =
1,...,K and n =1,..., N, respectively. This version of LDA is referred to as Dir-
PFA by Zhou et al. (2012a). For our proposed model, we construct PFAs by placing

Dirichlet priors on ¢, and gamma priors on 8,. This is summarized as,

K
Z'pn = Z 'Tpnku xpnk ~ POIS(qbpkeknhl(cln)) ) (32)

k=1

with priors specified as ¢y, ~ Dir(ag, ..., as), Ok, ~ Gamma(rg, p,/(1 — pn)), 7% ~
Gamma(~y, 1/cp), and vy ~ Gamma(eg, 1/fo).
The novelty in our model comes from the prior for the binary feature matrix

H®. Previously, Zhou and Carin (2015) proposed a beta-Bernoulli process prior
on the columns {h"}Y_, with p, = 0.5. This model was called NB-FTM, tightly

related with the focused topic model (FTM) (Williamson et al., 2010). In the work
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presented here, we construct H) from a deep structure based on the SBN (or RBM)

with binary latent units.
3.2.2  Structured Priors on the Latent Binary Matrix

The second part of our model consists of a deep structure for a binary hierarchy. To
this end, we employ the SBN (or RBM). In the following we start by describing a

single-layer model with SBN (or RBM), and then we generalize it to a deep model.

Modeling with the SBN We assume the latent vector for document n, bl e {0, 1},
This matches most of the RBM and SBN literature, for which typically the observed
data are binary. In our model, however, these binary variables are not observed; they
are hidden and related to the data through the PFA in (3.2).

To construct a structured prior, we define another hidden set of units hg) €
{0,1}%2 placed at a layer “above” hY. The layers are related through a set of
weights defined by the matrix WO = [w{" ... wgz]T e RF1*K2 - Ap SBN model

has the generative process,

p(hi), = 1) = o(cf) (3.3)
p(hi, = UR) = o (i) TRY +¢f))) | (3.4)

where h,(cll)n and h,(i)n are elements of b and hﬁf’, respectively. The function o(z) =

1/(14e") is the logistic function, and cgl) and c,(fg) are bias terms. The global param-

eters W) are used to characterize the mapping from R to h,(ll) for all documents.

Modeling with the RBM The SBN is closely related to the RBM, which is a Markov
random field with the same bipartite structure as the SBN. The RBM defines a

distribution over a binary vector that is proportional to the exponential of its energy,
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defined (using the same notation as in SBN) as

E(h, h?) = —(h)) e — (b)) "WORE — (h) e (3:5)

n

In the experiments we consider both the deep SBN and deep RBM for representation

of the latent binary units, which are connected to topic usage in a given document.

Remark An important benefit of SBNs over RBMs is that in the former sparsity or
shrinkage priors can be readily imposed on the global parameters W), and fully
Bayesian inference can be implemented as shown in Gan et al. (2015¢). The RBM
relies on an approximation technique known as contrastive divergence (Hinton, 2002),

for which prior specification for model parameters is limited.
3.2.3 Deep Architecture for Topic Modeling

Specifying a prior distribution on R as in (3.3) might be too restrictive in some
cases. Alternatively, we can use another SBN prior for hg), in fact, we can add

multiple layers as in Gan et al. (2015¢) to obtain a deep architecture,

p(h%), .. h) = p(RS) TTi, p(RY VR, (3.6)

where L is the number of layers, p(hﬁf)) is the prior for the top layer defined as
in (3.3), p(hY Y |RY) is defined as in (3.4), and the weights W® e RE-*Kert and
biases ) € RE¢ are omitted from the conditional distributions to keep notation un-
cluttered. A similar deep architecture may be designed for the RBM (Salakhutdinov
and Hinton, 2009a).

Instead of employing the beta-Bernoulli specification for h;” as in the NB-FTM,
which assumes independent topic usage probabilities, we propose using (3.6) instead

as the prior for h%l), thus

p(x,, hy,) = p(z,|RD)p(RY, ... R, (3.7)
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F1GURE 3.1: Graphical model for the Deep Poisson Factor Analysis with three layers
of hidden binary hierarchies.

where h,, = {hﬁﬂ), cee hq(lL)}, and p(:cn|h£3)) asin (3.2). The prior p(h,,(ll)|h,(12) ce th))
can be seen as a flexible prior distribution over binary vectors that encodes high-order
interactions across elements of h%. The graphical model for our model, Deep Poisson

Factor Analysis (DPFA) is shown in Figure 3.1. The directed binary hierarchy may

be replaced by a deep Boltzmann machine.
3.3 Scalable Posterior Inference

We focus on learning our model with fully Bayesian algorithms, however, emerging
large-scale corpora prohibit standard MCMC inference algorithms to be applied di-
rectly. For example, in the experiments, we consider the RC'V1-v2 and the Wikipedia
corpora, which contain about 800K and 10M documents, respectively. Therefore, fast
algorithms for big Bayesian learning are essential. While parallel algorithms based
on distributed architectures such as the parameter server (Ho et al., 2013; Li et al.,
2014) are popular choices, in the work presented here, we focus on another direc-
tion for scaling up inference by stochastic algorithms, where mini-batches instead of
the whole dataset are utilized in each iteration of the algorithms. Specifically, we
develop two stochastic Bayesian inference algorithms based on Bayesian conditional
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Algorithm 1 BCDF algorithm for DPFA.

Input: text documents, i.e., a count matrix X.
Initialize \Ilgo) randomly and set Séo) all to zero.
for t =1 to o do
Get one mini-batch X®).
Initialize ¥4 = (™Y and 8{ = s~
Initialize \Ill(t) randomly.
for s=1to S do
Gibbs sampling for DPFA on X®.
Collect samples W;:S, \Illl:s and S;:S.
end for
Set \Ilgt) = mean(\Ilé:S), and Sgt) = mean(S;:S).
end for

density filtering (Guhaniyogi et al., 2014) and stochastic gradient thermostats (Ding
et al., 2014), both of which have theoretical guarantees in the sense of asymptotical

convergence to the true posterior distribution.
3.3.1 Bayesian conditional density filtering

Bayesian conditional density filtering (BCDF) is a recently proposed stochastic al-
gorithm for Bayesian online learning (Guhaniyogi et al., 2014), that extends Markov
chain Monte Carlo (MCMC) sampling to streaming data. Sampling in BCDF pro-
ceeds by drawing from the conditional posterior distributions of model parameters,
obtained by propagating surrogate conditional sufficient statistics (SCSS). In prac-
tice, we repeatedly update the SCSS using the current mini-batch and draw S sam-
ples from the conditional densities using, for example, a Gibbs sampler. This elimi-
nates the need to load the entire dataset into memory, and provides computationally
cheaper Gibbs updates. More importantly, it can be proved that BCDF leads to an
approximation of the conditional distributions that produce samples from the correct
target posterior asymptotically, once the entire dataset is seen (Guhaniyogi et al.,
2014).

In the learning phase, we are interested in learning the global parameters ¥, =
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e}, {re}, 70, (WO, c®}). Denote local variables as ¥; = (@, H®), and let S,
represent the SCSS for ¥, the BCDF algorithm can be summarized in Algorithm 1.
Specifically, we need to obtain the conditional densities, which can be readily derived
granted the full local conjugacy of the proposed model. Using dot notation to repre-

sent marginal sums, e.g., T, = Zp Zpnk, We can write the key conditional densities

for (3.2) as (Zhou and Carin, 2015)

xpnk|_ ~ MUIti(xpn; gpnlu s 7Can) ) (38)
¢]€|— ~ DiI‘(CL¢ + Tigy -, 04 +1Ep.k>7 (39)
9kn|_ ~ Gamma<rkh](gln) + x-nk;pn); (310)
hion | = ~ 8(2.n = 0)Ber (m) + (x> 0), (3.11)

where g, = (1 = po)™, o = o((wi)Th + V), and Gurodpbrn. Addi-

tional details are provided in Section 3.7.1. For the conditional distributions of

WO and H®, we use the same data augmentation technique as in Gan et al.

(2015¢), where Pélya-Gamma (PG) variables ’y,(gi)n (Polson et al., 2013b) are intro-

duced for hidden unit k; in layer ¢ corresponding to observation w,. Specifically,
(¢ )

each fy,w)n has conditional posterior PG(1, (w,(gi))Th%H) + ¢, ). If we place a Gaus-

sian prior N(0,0%I) on w,(f), the posterior will still be Gaussian with covariance

matrix ng;) =D~ (0 p{+) (hgfﬂ))T + o 7?I]7" and mean p,, O _ E,(:;)[Z (h(z) -

n kgn ken

1/2— ckf ,(gf)n)h(””]. Furthermore, for £ > 1, the conditional distribution of h,(:;n can

be obtained as!

h,(f;)n ~ Bernoulli (o(dg,»)) , (3.12)

! Here and in the rest of the paper, whenever ¢ > L, hg) is defined as a zero vector, for conciseness.
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where

dipn = (w5 ) TRED + (wi) TR 4 ¢ (3.13)
1) ke o (6-1 -1
5 S (D, ¢ L) (3.14)
ko1
and Q/JZIZ n= Zk, hy wké N h,i,) + c,(f Y. Note that w,(fk)[“ and w,(ci) represents the

koi1th column and the transpose of the ksith row of W), respectively. As can be

seen, the conditional posterior distribution of h,(c?n is both related to h,(f Y and h,(f ),

3.3.2  Stochastic gradient thermostats

Our second learning algorithm adopts the recently proposed SGNHT for large scale
Bayesian sampling (Ding et al., 2014), which is more scalable and accurate than
the previous BCDF algorithm. SGNHT generalizes the stochastic gradient Langevin
dynamics (SGLD) (Welling and Teh, 2011) and the stochastic gradient Hamiltonian
Monte Carlo (SGHMC) (Chen et al., 2014b) by introducing momentum variables
into the system, which is adaptively damped using a thermostat. The thermostat
exchanges energy with the target system (e.g., a Bayesian model) to maintain a
constant temperature; this has the potential advantage of making the system jump
out of local modes easier and reach the equilibrium state faster (Ding et al., 2014).
Specifically, let ¥, € RM be model parameters? which corresponds to the location
of particles in a physical system, v € RM be the momentum of these particles, which
are driven by stochastic forces f defined as the negative stochastic gradient (evaluated
on a subset of data) of a Bayesian posterior, e.g., f(¥,) = *V\yg(j(\llg), where U (W)

is the negative log-posterior of a Bayesian model. The motion of the particles in the

2 With a little abuse of notation but for conciseness, we use W, to denote the reparameterized
version of the parameters (such that ¥, € RM ) if any, required in SGNHT.
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system are then defined by the following stochastic differential equations:
AW, = vdt, dv = f(¥,)dt — Evdt + VDAW,

d¢ = (Hv'v—1)dt, (3.15)

where t indexes time, W is the standard Wiener process, ¢ is called the thermostat
variable which ensures the system temperature to be constant, and D is the variance
of the total noise injected into the system and is assumed to be constant.

It can be shown that under certain assumptions, the equilibrium distribution of
system (3.15) corresponds to the model posterior (Ding et al., 2014). As a result, the
SDE (3.15) can be solved by using the Euler-Maruyama scheme (Tuckerman, 2010),
where a mini-batch of the whole data is used to evaluate the stochastic gradient
f . Note only one thermostat variable £ is used in the SDE system (3.15); this
is not robust enough to control the system temperature well because of the high
dimensionality of ¥,. Based on the techniques in Ding et al. (2014), we extend the
SGNHT by introducing multiple thermostat variables (£, -+, &) into the system
such that each &; controls one degree of the particle momentum. Intuitively, this
allows energy to be exchanged between particles and thermostats more efficiently,
thus driving the system to equilibrium states more rapidly. Empirically we have
also verified the superiority of the proposed modification over the original SGNHT.
Formally, let 2 = diag(&, &2, -+ ,&m), q = diag(v?, -+ ,v3,), we define our proposed
SGNHT using the following SDEs

¥, = vdt, dv = f(¥,)dt — Zvdt + vV DAW,

dZ = (q —T)dt, (3.16)

where I is the identity matrix. Interestingly, we are still able to prove that the

equilibrium distribution of the above system corresponds to the model posterior.
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Theorem 1. The equilibrium distribution of the SDE system in (3.16) is

(W, v, ) exp (—%UTU _U(w,) — %tr{(E _p) (= D)}) BENERTS

By Theorem 1, it is straightforward to see that the marginal distribution p(¥,) of
p(¥,, 7, E) is exactly the posterior of our Bayesian model. As a result, again we can

generate approximate samples from p(¥,, 7, E) using the Euler-Maruyama scheme

and discard the auxiliary variables v and E.

Learning for the SBN-based model Our SBN-based model is illustrated in Figure 3.1.
In the learning phase we are interested in learning the global parameters ¥,, the
same as in BCDF. The constraints inside the parameters {¢y}, i.e., Zp Gpe = 1,
prevent the SGNHT from being applied directly. Although we can overcome this
problem by using re-parameterization methods as in Patterson and Teh (2013), we
find it converges better when considering information geometry for these parameters.
As a result, we use stochastic gradient Riemannian Langevin dynamics (SGRLD)
(Patterson and Teh, 2013) to sample the topic-word distributions {¢y}, and use the
SGNHT to sample the remaining parameters. Based on the data augmentation for
Zp, above, Section 3.3.1 shows that the posteriors of {¢y}’s are Dirichlet distributions.
This enables us to apply the same scheme as the SGRLD for LDA (Patterson and
Teh, 2013) to sample {¢py}’s.

The rest of the parameters can be straightforwardly sampled using the SGNHT
algorithm. Specifically we need to calculate the stochastic gradients of W® and ¢

evaluated on a mini-batch of data (denote D as the index set of a mini-batch). Based
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on the model definition in (3.6), these can be calculated as

U 0 41
—_— = E, « @+ [(U — h n) hq(l+ )] , (3.18)
(3’w,(.£) |'D| Z hy’ by, ke ke

oU t

— = E O p 1) [0 o —h n] (3.19)

where 6,(:;)71 = 0((w,(€?)Th,(f oy cg)) and the expectation is taken over posteriors. As

in the case of LDA (Patterson and Teh, 2013), no closed-form integrations can be
obtained for the above gradients, we thus use Monte Carlo integration to approximate

the quantity. Specifically, given {’wké cke)} we are able to collect samples of the

local variables (hg ))nep by running a few Gibbs steps and then using these samples

to approximate the intractable integrations. Exact conditional distributions for hkm
exist without variable augmentation, however, we found that this approach does not
mix well due to the highly correlated structure of hidden variables. Instead, we

sample h( . based on the same augmentation used in BCDF, given in (3.12).

Learning for the RBM-based model As mentioned above, our RBM-based model is
recovered when replacing the SBN with the RBM in Figure 3.1. Despite minor
changes in the construction, the intractable normalizer which consists of model pa-
rameters (e.g., W®)) prohibits exact MCMC sampling from being applied. As a
result, we develop an approximate learning algorithm that alternates between sam-
pling ({&r}, {7}, 7)) and ({WO c®}). Specifically, we use the same conditional
posteriors as in the SBN-based model to sample the former, but use the contrastive
divergence algorithm (CD-1) (Hinton, 2002) for the latter. One main difference of
our CD-1 algorithm w.r.t the original one is that the inputs (i.e., h;l)) are hid-
den variables. To make the CD-1 work, conditioned on other model parameters,

we first sample h'Y using the posterior given in Section 3.3.1, then conditioned on
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h,(ll), we apply the original CD-1 algorithm to calculate the approximate gradients for
({W® e}, which are then used for a gradient descent step in SGNHT. In fact, the
CD-1 is also a stochastic approximate algorithm, discussed in Yuille (2005), making

it naturally fit into our SGNHT framework.
3.3.8  Discussion

Both the BCDF and SGNHT are stochastic inference algorithms, allowing the models
to be applied to large-scale data. In terms of ease of implementation, BCDF beats
SGNHT in most cases, especially when the model is conjugate and the domain of
parameters is constrained (e.g., variables on a simplex). However, in general BCDF is
more restrictive than SGNHT. For example, BCDF prefers the conditional densities
for all the parameters, which is unavailable in some cases. Furthermore, BCDF has
the limitation of being unable to deal with some big models where the number of
model parameters is large, for instance, when the dimension of the hidden variables
from the SBN in our model is huge. Finally, the conditions for BCDF to converge
to the true posterior are more restricted. Altogether, these reasons make SGNHT

more robust than BCDF.
3.4 Related Work

In traditional Bayesian topic models, topic correlations are typically modeled with
shallow structures, e.g., the correlated topic model (Blei and Lafferty, 2007) with
correlation between topic proportions imposed via the logistic normal distribution.
There exist also some work on hierarchical (“deep”) correlation modeling, e.g., the
hierarchical Dirichlet process (Teh et al., 2006), which models topic proportions
hierarchically via a stack of DPs. The nested Chinese restaurant process (Blei et al.,
2004) (nCRP) models topic hierarchies by defining a tree structure prior based on

the Chinese restaurant process, and the nested hierarchical Dirichlet process (Paisley
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et al., 2015) extends the nCRP by allowing each document to be able to access all the
paths in the tree. One major difference between these models and ours is that they
focus on discovering topic hierarchies instead of modeling general topic correlations.

In the deep learning community, topic models are mostly built using the RBM as
a building block. For example, Hinton and Salakhutdinov (2011) and Maaloe et al.
(2015) extended the DBN for topic modeling, while a deep version of the RSM was
proposed by Srivastava et al. (2013). More recent work focuses on employing deep
directed generative models for topic modeling, e.g., deep exponential families (Ran-
ganath et al., 2015), a class of latent variable models extending the DBN by defining
the distribution of hidden variables in each layer using the exponential family, instead
of the restricted Bernoulli distribution.

In terms of learning and inference algorithms, most of existing Bayesian topic
models rely on MCMC methods or variational Bayes algorithms, which are imprac-
tical when dealing with large scale data. Therefore, stochastic variational inference
algorithms have been developed (Hoffman et al., 2010; Mimno et al., 2012; Wang
and Blei, 2012; Hoffman et al., 2013b). Although scalable and usually fast converg-
ing, one unfavorable shortcoming of stochastic variational inference algorithms is the
mean-field assumption on the approximate posterior.

Another direction for scalable Bayesian learning relies on the theory from stochas-
tic differential equations (SDE). Specifically, Welling and Teh (2011) proposed the
first stochastic MCMC algorithm, called stochastic gradient Langevin dynamics (SGLD),
for large scale Bayesian learning. In order to make the learning faster, Patterson and
Teh (2013) generalized SGLD by considering information geometry (Girolami and
Calderhead, 2011; Byrne and Girolami, 2013) of model posteriors. Furthermore,
Chen et al. (2014b) generalized the SGLD by a second-order Langevin dynamic,
called stochastic gradient Hamiltonian Monte Carlo (SGHMC). This is the stochastic

version of the well known Hamiltonian MCMC sampler. One problem with SGHMC
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is that the unknown stochastic noise needs to be estimated to make the sampler
correct, which is impractical. Stochastic gradient thermostats algorithms (SGNHT)
overcome this problem by introducing the thermostat into the algorithm, such that
the unknown stochastic noise could be adaptively absorbed into the thermostat,
making the sampler asymptotically exact. Given the advantages of the SGNHT, in
this paper we extend it to a multiple thermostats setting, where each thermostat
exchanges energy with a degree of freedom of the system. Empirically we show that
our extension improves on the original algorithm.

Since the publication of this paper, some more advanced modeling approaches
have been proposed, including deep Poisson factor modeling (Henao et al., 2015,
2016), Poisson gamma belief network (Zhou et al., 2015, 2016), deep latent Dirichlet
allocation (Cong et al., 2017), and topic compositional neural language model (Wang

et al., 2017).

3.5 Experiments

3.5.1 Datasets and Setups

We present experimental results on three publicly available corpora: a relatively
small, 20 Newsgroups, a moderately large, Reuters Corpus Volume I (RCV1-v2), and
a large one, Wikipedia. The first two corpora are the same as those used in Srivas-
tava et al. (2013). Specifically, the 20 Newsgroups corpus contains 18,845 documents
with a total of 0.7M words and a vocabulary size of 2K. The data was partitioned
chronologically into 11,314 training and 7,531 test documents. The RCV1-v2 corpus
contains 804,414 newswire articles. There are 103 topics that form a tree hierarchy.
After preprocessing, we are left with about 75M words, with a vocabulary size of
10K. We randomly select 794,414 documents for training and 10,000 for testing. Fi-
nally, we downloaded 10M random documents from Wikipedia using scripts provided

in Hoffman et al. (2010) and randomly selected 1K documents for testing. As in
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Hoffman et al. (2010); Patterson and Teh (2013), a vocabulary size of 7,702 was
taken from the top 10K words in Project Gutenberg texts.

The DPFA model consisting of SBN is denoted as DPFA-SBN, while its RBM
counterpart is denoted DPFA-RBM. The performance of DPFA is compared to that
of the following models: LDA (Blei et al., 2003), NB-FTM (Zhou and Carin, 2015),
nHDP (Paisley et al., 2015) and RSM (Salakhutdinov and Hinton, 2009b).

For all the models considered, we calculate the predictive perplexities on the test
set as follows: holding the global model parameters fixed, for each test document we
randomly partition the words into a 80/20% split. We learn document-specific “local”
parameters using the 80% portion, and then calculate the predictive perplexities on
the remaining 20% subset. Evaluation details are provided in Section 3.7.2.

For 20 Newsgroups and RCV1-v2 corpora, we use 2,000 mini-batches for burn-
in followed by 1,500 collection samples to calculate test perplexities; while for the
Wikipedia dataset, 3,500 mini-batches are used for burn-in. The mini-batch size
for all stochastic algorithms is set to 100. To choose good parameters for SGNHT,
e.g., the step size and the variance of the injected noise, we randomly choose about
10% documents from the training data as validation set. For BCDF, 100 MCMC
iterations are evaluated for each mini-batch, with the first 60 samples discarded. We
set the hyperparameters of DPFA as a, = 1.01,¢9 = ¢y = 1, fy = 0.01, and p,, = 0.5.
The RSM is trained using convergence-divergence with step size 5 and a maximum
of 10,000 iterations. For nHDP, we use the publicly available code from Paisley et al.

(2015), in which stochastic variational Bayes (sVB) inference is implemented.
3.5.2  Quantitative Evaluation

20 Newsgroups 'The results for the 20 Newsgroups corpus are shown in Table 3.1.
Perplexities are reported for our implementation of Gibbs sampling, BCDF and

SGNHT, and the four considered competing methods. “Dim” represents the number
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FIGURE 3.2: Predictive perplexities on the test set as a function of training docu-

ments seen. (Left) 20 News. (Middle) RCVI-v2. (Right) Wikipedia.

Table 3.1: Test perplexities for 20 Newsgroups.

MODEL METHOD DiMm PERP.
DPFA-SBN-t (GIBBS 128-64-32 827
DPFA-SBN GIBBS 128-64-32 846
DPFA-SBN SGNHT 128-64-32 846
DPFA-RBM  SGNHT 128-64-32 896
DPFA-SBN BCDF 128-64-32 905

DPFA-SBN GIBBS 128-64 851
DPFA-SBN SGNHT 128-64 850
DPFA-RBM SGNHT 128-64 893
DPFA-SBN BCDF 128-64 896
LDA GIBBS 128 893
NB-FTM GIBBS 128 887
RSM CD5 128 877
NHDP sVB (10,10,5)° 889

of hidden units in each layer, starting from the bottom. DPFA-SBN-t represents
the DPFA-SBN model with Student’s ¢ prior on W), (o) represents the base tree
size in nHDP. First, we examine the performance of different inference algorithms.
As can be seen, for the same size model, e.g., 128-64-32 (128 topics and 32 binary
nodes on the top of the three-layer model), SGNHT can achieve essentially the same
performance as Gibbs sampling, while BCDF is more likely to get trapped in a
local mode. Next, we explore the advantage of employing deep models. Using three
layers instead of two gives performance improvements in almost all the algorithms.
In Gibbs sampling, there is an improvement of 36 units for the DPFA-SBN model,
when a second layer is learned (NB-FTM is the one-hidden-layer DPFA). Adding the
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Table 3.2: Test perplexities on RCVI-v2 and Wikipedia.

MODEL METHOD DIiMm RCV  WIKI
DPFA-SBN SGNHT 1024-512-256 964 770
DPFA-SBN SGNHT 512-256-128 1073 799

DPFA-SBN SGNHT 128-64-32 1143 876
DPFA-RBM SGNHT 128-64-32 920 942
DPFA-SBN BCDF 128-64-32 1149 986
LDA BCDF 128 1179 1059
NB-FTM BCDF 128 1155 991
RSM CDb5 128 1171 1001
NHDP sVB (10,5,5) 1041 932

third hidden layer further improves the test perplexity.

Adding a sparsity-encouraging prior on W acts as a more stringent regular-
ization that prevents overfitting, when compared with the commonly used Ls norm
(Gaussian prior). Furthermore, shrinkage priors have the effect of being able to ef-
fectively switch off the elements of W) which benefits interpretability and helps
to infer the number of units needed to represent the data. In our experiment, we
observe that the DPFA-SBN model with the Student’s ¢ prior on W achieves a

better test perplexity when compared with its counterpart without shrinkage.

RCV1-v2 & Wiki We present results for the RCVI-v2 and Wikipedia corpora in
Table 3.2. Direct Gibbs sampling in such a (big-data) setting is prohibitive, and is
thus not discussed. First, we explore the effect of utilizing a larger deep network.
For our DPFA-SBN model using the SGNHT algorithm, we observe that making the
network 8 time larger in each hidden layer decreases the test perplexities by 155 and
84 units on RCV1-v2 and Wikipedia, respectively. This demonstrates the ability of
our stochastic inference algorithm to scale up both in terms of model and corpus
size.

Both SBN and RBM can be utilized as the building block in our deep specifica-

tion. For the RCV1-v2 corpus, our best result is obtained by utilizing a three-layer
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FIGURE 3.4: Test perplexities as a function of training documents seen. (Left)
RCV1-v2. (Right) Wikipedia.

deep Boltzmann machine. However, for the 20 Newsgroups and Wikipedia corpora,
with the same size model, we found empirically that the deep SBN achieves better
performance.

Compared with nHDP, our DPFA models define a more flexible prior on topic
interactions, and therefore in practice we also consistently achieve better perplexity
results. We further show test perplexities as a function of documents processed
during model learning in Figure 3.2. The number of hidden units in each layer is
128, 64, 32, respectively. As can be seen, performance smoothly improves as the

amount of data processed increases.
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FI1GURE 3.5: Top words from the 30 topics corresponding to the graph in Figure 3.6,
learned by DPFA-SBN from the 20Newsgroup corpus.

3.5.8  Sensitivity analysis

We examined the sensitivity of the model performance with respect to batch sizes in
SGNHT on the three corpora considered. The results are shown in Figure 3.3. We
found that overall performance, both convergence speed and test perplexity, suffer
considerably when the batch size is smaller than 10 documents. However, for batch
sizes larger than 50 (100 for RC'V1-v2) we obtain performances comparable to those
shown in Tables 3.1 and 3.2.

We run the SGNHT algorithm on the RCVI-v2 and Wikipedia datasets long
enough so that the whole corpora can be traversed. The results are shown in Figure
3.4. As can be seen, performance smoothly improves as the amount of data processed

increases.
3.5.4  Visualization

We can obtain a visual representation of the topic structure implied by the deep
component of our DPFA model by computing correlations between topics using
the weight matrices, W learned by DPFA-SBN, i.e, we evaluate the covariance
WOWR(WOWE)T then scale it accordingly. Figure 3.6 shows a graph for a

subset of 30 topics (nodes), where edge thickness encodes correlation coefficients and
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FI1GURE 3.6: Graphs induced by the correlation structure learned by DPFA-SBN for
the 20 Newsgroups.

we have chosen, to ease visualization, to show only coefficients larger than 0.85. Each
node represents a topic with top words shown in Figure 3.5. In addition, Figure 3.5
shows the top words for each topic depicted in Figure 3.6. We see three very in-
teresting subgraphs representing different categories, namely, sports, computers and

politics/law.
3.6 Discussion

We have presented the Deep Poisson Factor Analysis model, an extension of PFA,
that models the high-order interactions between topics, via a deep binary hierar-
chical structure, employing SBNs and RBMs. To address large-scale datasets, two
stochastic Bayesian learning algorithms were developed. Experimental results on
several corpora show that the proposed approach obtains superior test perplexities
and reveals interesting topic structures.

While this work has focused on unsupervised topic modeling, one can extend the
model into a supervised version by joint modeling of the text with associated labels
via latent binary features as in Zhang and Carin (2012). Furthermore, as mentioned
in Section 4.5, global-local shrinkage priors (Polson and Scott, 2012) will encourage

a large proportion of the elements of W to be shrunk close to zero. By setting the
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number of hidden units to a reasonably large value, this provides a natural way to

let the model select automatically the number of features actually needed.

3.7 Supplementary Material

3.7.1 Conditional Densities used in BCDF

Using dot notation to represent marginal sums, e.g., T.; = Zp Tpnk, We can write
the conditional densities for DPFA as (Zhou and Carin, 2015)
Tpnk|— ~ Multi(zpn; Gont, - - - Gonk) 5 (3.20)
¢r|— ~ Dir(ag + 1k, - .., a5 + Tpi)
Opn|— ~ Gamma(rkh,(fn) + Tk, Pr) s
N

1
ri|— ~ Gamma (70 + Z lin, a )) , (3.21)
— Pn

n=1 Co — 22;1 hl(;l) In

K
/ 1
Yo|— ~ Gamma | ey + » [, - ) : (3.22)
( kZ_:l Jo— ZkK=1 In(1—py)

1 —p,)"
B~ < (z = 0)B Ten(L = P
kn| (T )Ber Tin(1 = o)™ + (1 — en)

+ (S(I’nk > 0),
where
N

lgn|— ~ CRT <5U-nk77"kh1(€1n)) , lil=~ CRT <2 lkn/Yo) ; (3.23)

n=1

NN (1)1 1
Cpnk = [gbpkekn 5 p;c = anvl hkrzl)n( pn) ) (324)

Zk:l ¢pk9kn Co — Zn=1 hkn ln(l - pn)

Thn = O <(w,(€1))Th£l2) + c,(gl)) . (3.25)

CRT represents the Chinese Restaurant Table distribution. A CRT random vari-

able [ ~ CRT(m,r) can be generated with the summation of independent Bernoulli
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random variables as (Zhou and Carin, 2015)

& r
[ = bn, b, ~Ber | —— | . 2
7;1 o (n -1+ 7’) (3:26)

3.7.2  FEvaluation Details on Perplezities

For each test document, we randomly partition the words into a 80/20% split. We
learn document-specific local parameters using the 80% portion, and then calculate
the predictive perplexities on the remaining 20% subset, denoted as Y. For the

PFA-based models, the test perplexity is calculated as (Zhou et al., 2012a)

1 P N Sﬁ K, s @S

S P K
Y. p=1n=1 Zs:l Zp:l Zkzl ]sakelin

where S is the total number of collected samples, y.. = 25:1 25:1 Ypr, and Yy, is an
element of matrix Y.
The conditional distribution of y, given h,, in the Replicated Softmax model

(RSM) is specified as
Yn ~ Multi(Dy; Bn) (3.28)

exp(w,) by, + ¢p)

2521 exp(w)hy, + cy)

Bpn = , (3.29)

where vy, is the nth column of Y, and D,, = 25:1 Ypne W = w1, ... wp|" € RPXE

is the mapping from h,, to y,, and ¢ = [cy,....cp]" € RF*! is the bias term. Based

on this, the predictive test perplexity for RSM can be calculated as

1 P N
exp (—— 2. 2. Y log ﬁpn) . (3.30)
Y- p=1n=1
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4

Temporal Sigmoid Belief Networks for Sequence
Modeling

In this chapter, I will present temporal sigmoid belief networks for sequential data.
The proposed model is a sequential stack of sigmoid belief networks (SBNs). Each
SBN has a contextual hidden state, inherited from the previous SBNs in the sequence,
and is used to regulate its hidden bias. We show in the experiments that the proposed

model has the capacity to synthesize various sequences.
4.1 Introduction

Considerable research has been devoted to developing probabilistic models for high-
dimensional time-series data, such as video and music sequences, motion capture
data, and text streams. Among them, Hidden Markov Models (HMMs) (Rabiner
and Juang, 1986) and Linear Dynamical Systems (LDS) (Kalman, 1963) have been
widely studied, but they may be limited in the type of dynamical structures they can
model. An HMM is a mixture model, which relies on a single multinomial variable

to represent the history of a time-series. To represent N bits of information about
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the history, an HMM could require 2% distinct states. On the other hand, real-world
sequential data often contain complex non-linear temporal dependencies, while a
LDS can only model simple linear dynamics.

Another class of time-series models, which are potentially better suited to model
complex probability distributions over high-dimensional sequences, relies on the use
of Recurrent Neural Networks (RNNs) (Hermans and Schrauwen, 2013; Martens
and Sutskever, 2011; Pascanu et al., 2013; Graves, 2013), and variants of a well-
known wundirected graphical model called the Restricted Boltzmann Machine (RBM)
(Taylor et al., 2006; Sutskever and Hinton, 2007; Sutskever et al., 2009; Boulanger-
Lewandowski et al., 2012; Mittelman et al., 2014). One such variant is the Temporal
Restricted Boltzmann Machine (TRBM) (Sutskever and Hinton, 2007), which con-
sists of a sequence of RBMs, where the state of one or more previous RBMs determine
the biases of the RBM in the current time step. Learning and inference in the TRBM
is non-trivial. The approximate procedure used in Sutskever and Hinton (2007) is
heuristic and not derived from a principled statistical formalism.

Recently, deep directed generative models (Kingma and Welling, 2013; Mnih and
Gregor, 2014; Rezende et al., 2014; Gan et al., 2015¢) are becoming popular. A
directed graphical model that is closely related to the RBM is the Sigmoid Belief
Network (SBN) (Neal, 1992). In the work presented here, we introduce the Temporal
Sigmoid Belief Network (TSBN), which can be viewed as a temporal stack of SBNs,
where each SBN has a contextual hidden state that is inherited from the previous
SBNs and is used to adjust its hidden-units bias. Based on this, we further develop
a deep dynamic generative model by constructing a hierarchy of TSBNs. This can
be considered as a deep SBN (Gan et al., 2015¢) with temporal feedback loops on
each layer. Both stochastic and deterministic hidden layers are considered.

Compared with previous work, our model: (7) can be viewed as a generalization of

an HMM with distributed hidden state representations, and with a deep architecture;
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(7i) can be seen as a generalization of a LDS with complex non-linear dynamics; (iii)
can be considered as a probabilistic construction of the traditionally deterministic
RNN; (i) is closely related to the TRBM, but it has a fully generative process,
where data are readily generated from the model using ancestral sampling; (v) can
be utilized to model different kinds of data, e.g., binary, real-valued and counts.
The “explaining away” effect described in Hinton et al. (2006) makes inference
slow, if one uses traditional inference methods. Another important contribution
we present here is to develop fast and scalable learning and inference algorithms,
by introducing a recognition model (Kingma and Welling, 2013; Mnih and Gregor,
2014; Rezende et al., 2014), that learns an inverse mapping from observations to
hidden variables, based on a loss function derived from a variational principle. By
utilizing the recognition model and variance-reduction techniques from Mnih and

Gregor (2014), we achieve fast inference both at training and testing time.

4.2 Model Formulation

4.2.1  Temporal Sigmoid Belief Networks

The proposed Temporal Sigmoid Belief Network (TSBN) model is a sequence of
SBNs arranged in such way that at any given time step, the SBN’s biases depend
on the state of the SBNs in the previous time steps. Specifically, assume we have a

length-T" binary visible sequence, the tth time step of which is denoted v; € {0, 1}*.
The TSBN describes the joint probability as

T
PB(V,H) = ( ’01|h1 np ht|ht—1avt—1) 'p(’vt|htavt—1)a (4-1)
t=2

where V = [vy,...,v7], H= [hy,..., hy], and each h; € {0, 1}’ represents the hid-

den state corresponding to time step t. Fort = 1,..., T, each conditional distribution
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FI1GURE 4.1: Graphical model for the Deep Temporal Sigmoid Belief Network.

in (4.1) is expressed as
p(hj = 1hi_1,ve1) = O—(wirjhtfl + ’ngjUt—l +b;), (4.2)

P(Vmt = 1hy,v4-1) = a(w;mht + wlmvt,l + Cm), (4.3)

where hgy and vy, needed for the prior model p(hy) and p(vi|h), are defined as
zero vectors, respectively, for conciseness. The model parameters, 6, are specified as
W, e R Wy e R W3 e RP>M W, e RM*M_ For i = 1,2,3,4, w;; is the
transpose of the jth row of W, and ¢ = [c1,...,ca|" and b = [by,...,bs]" are bias
terms. The graphical model for the TSBN is shown in Figure 4.1(a).

By setting W3 and Wy to be zero matrices, the TSBN can be viewed as a Hidden
Markov Model (Rabiner and Juang, 1986) with an exponentially large state space,
that has a compact parameterization of the transition and the emission probabilities.
Specifically, each hidden state in the HMM is represented as a one-hot length-J
vector, while in the TSBN, the hidden states can be any length-J binary vector. We
note that the transition matrix is highly structured, since the number of parameters
is only quadratic w.r.t. J. Compared with the TRBM (Sutskever and Hinton, 2007),

our TSBN is fully directed, which allows for fast sampling of “fantasy” data from
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the inferred model.
4.2.2 TSBN Variants

Modeling real-valued data The model above can be readily extended to model real-
valued sequence data, by substituting (4.3) with p(vi|hs, vi_1) = N (e, diag(o?)),

where

Hmt = w;—mht + wé—lrm'vt—l + Cm, log O-TZrLt = (wém)—rh’t + (wﬁlm)—rvt—l + C;n7 (44)

and i,y and o2, are elements of p; and o2, respectively. W), and W/, are of the same
size of Wy and W, respectively. Compared with the Gaussian TRBM (Sutskever
et al., 2009), in which o, is fixed to 1, our formalism uses a diagonal matrix to

parameterize the variance structure of v;.

Modeling count data We also introduce an approach for modeling time-series data

with count observations, by replacing (4.3) with p(vi|hy, vi_1) = [N, y’nt, where

exp(wy, by + w) vi | + cp)

(4.5)

Ymt = M .
T T
Dy exp(wy, by +w,, v 1 + Cpy)

This formulation is related to the Replicated Softmax Model (RSM) described in
Salakhutdinov and Hinton (2009b), however, our approach uses a directed connec-
tion from the binary hidden variables to the visible counts, while also learning the
dynamics in the count sequences.

Furthermore, rather than assuming that h;, and v, only depend on h;_; and v;_,
in the experiments, we also allow for connections from the past n time steps of the
hidden and visible states, to the current states, h; and v;. A sliding window is then
used to go through the sequence to obtain n frames at each time. We refer to n as

the order of the model.
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4.2.3 Deep Architecture for Sequence Modeling with TSBNs

Learning the sequential dependencies with the shallow model in (4.1)-(4.3) may be
restrictive. Therefore, we propose two deep architectures to improve its representa-
tional power: (i) adding stochastic hidden layers; (i7) adding deterministic hidden

layers. The graphical model for the deep TSBN is shown in Figure 4.1(c). Specifically,

we consider a deep TSBN with hidden layers hiz) fort=1,...,Tand ¢ =1,...,L.
Assume layer ¢ contains J® hidden units, and denote the visible layer v, = h§°) and
let hELH) = 0, for convenience. In order to obtain a proper generative model, the
top hidden layer h(%) contains stochastic binary hidden variables.

For the middle layers, £ = 1, ..., L —1, if stochastic hidden layers are utilized, the
generative process is expressed as p(hy)) = H;]Si p(h§?|h§€+1), hl(f_)l, h,(f__ll)), where
each conditional distribution is parameterized via a logistic function, as in (4.3).
If deterministic hidden layers are employed, we obtain hl(f) =f (hg“l), hiz_)l, hiz__ll)),
where f(-) is chosen to be a rectified linear function. Although the differences between

these two approaches are minor, learning and inference algorithms can be quite

different, as shown in Section 4.3.3.
4.3 Scalable Learning and Inference

Computation of the exact posterior over the hidden variables in (4.1) is intractable.
Approximate Bayesian inference, such as Gibbs sampling or mean-field variational
Bayes (VB) inference, can be implemented (Gan et al., 2015¢; Neal, 1992). However,
Gibbs sampling is very inefficient, due to the fact that the conditional posterior
distribution of the hidden variables does not factorize. The mean-field VB indeed
provides a fully factored variational posterior, but this technique increases the gap
between the bound being optimized and the true log-likelihood, potentially resulting

in a poor fit to the data. To allow for tractable and scalable inference and parameter
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learning, without loss of the flexibility of the variational posterior, we apply the
Neural Variational Inference and Learning (NVIL) algorithm described in Mnih and
Gregor (2014).

4.3.1  Variational Lower Bound Objective

We are interested in training the TSBN model, pg(V,H), described in (4.1), with
parameters 6. Given an observation V, we introduce a fixed-form distribution,
q6(H|V), with parameters ¢, that approximates the true posterior distribution,
p(H|V). We then follow the variational principle to derive a lower bound on the

marginal log-likelihood, expressed as!

L(V,8,¢) = Egyqav)[logpe(V, H) —log g4 (H|V)] . (4.6)

We construct the approximate posterior ¢,(H|V) as a recognition model. By using
this, we avoid the need to compute variational parameters per data point; instead
we compute a set of parameters ¢ used for all V. In order to achieve fast inference,

the recognition model is expressed as

T
(H‘V =4q hl’/vl Hq ht‘htfla'vt;vtfl)a (47)
t=2

and each conditional distribution is specified as

q(hjr = 1hi_q1, v, v01) = a(ulTjht_l + 'u,QTj'vt + ugjvt_l +d;), (4.8)

where hg and vy, for g(hq|v;), are defined as zero vectors. The recognition parameters
¢ are specified as U; € R/ Uy e R”*M Uy € R”*M. For i = 1,2,3, u; is the
transpose of the jth row of U;, and d = [dy,...,d,]" is the bias term. The graphical
model is shown in Figure 4.1(b).

The recognition model defined in (4.8) has the same form as in the approximate

inference used for the TRBM (Sutskever and Hinton, 2007). Exact inference for

! This lower bound is equivalent to the marginal log-likelihood if ¢, (H|V) = p(H|V).
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our model consists of a forward and backward pass through the entire sequence, that
requires the traversing of each possible hidden state. Our feedforward approximation

allows the inference procedure to be fast and implemented in an online fashion.
4.3.2  Parameter Learning

To optimize (4.6), we utilize Monte Carlo methods to approximate expectations and
stochastic gradient descent (SGD) for parameter optimization. The gradients can be

expressed as

VoL(V) = E, mv)[Velogpe(V,H)], (4.9)

Vg L(V) = Egymv)[(log pa(V, H) —log o (H|V)) x Vg logge(H|V)].  (4.10)

Specifically, in the TSBN model, if we define 9,y = o(w,,,h; + W], vi 1 + ¢) and
fAth = o(uj;hi1 + uyv, + ug; v,y + d;), the gradients for wy, and uy; can be

calculated as
T T

1 H) log g (H ,
0logpe(V., Z vt — )y, DBIEN) vy e (@)

ﬁwgm] (9u2jm P

Other update equations, along with the learning details for the TSBN variants in
Section 4.2.2, are provided in Section 4.7.1. We observe that the gradients in (4.9)
and (4.10) share many similarities with the wake-sleep algorithm (Hinton et al.,
1995b). Wake-sleep alternates between updating 6 in the wake phase and updating
¢ in the sleep phase. The update of 8 is based on the samples generated from
q4(H|V), and is identical to (4.9). However, in contrast to (4.10), the recognition
parameters ¢ are estimated from samples generated by the model, i.e., V,L(V) =
E,ov.m)[Velogge(H|V)]. This update does not optimize the same objective as
n (4.9), hence the wake-sleep algorithm is not guaranteed to converge (Mnih and
Gregor, 2014).

Inspecting (4.10), we see that we are using l4(V, H) = log pe(V,H)—log ¢4 (H|V)
as the learning signal for the recognition parameters ¢. The expectation of this
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learning signal is exactly the lower bound (4.6), which is easy to evaluate. However,
this tractability makes the estimated gradients of the recognition parameters very
noisy. In order to make the algorithm practical, we employ the variance reduction
techniques proposed in Mnih and Gregor (2014), namely: (i) centering the learning
signal, by subtracting the data-independent baseline and the data-dependent base-
line; (74) variance normalization, by dividing the centered learning signal by a running
estimate of its standard deviation. The data-dependent baseline is implemented us-
ing a neural network. Additionally, RMSprop (Tieleman and Hinton, 2012), a form
of SGD where the gradients are adaptively rescaled by a running average of their
recent magnitude, were found in practice to be important for fast convergence; thus
utilized throughout all the experiments. The outline of the NVIL algorithm is shown
in Algorithm 2 (reproduced from Mnih and Gregor (2014)). Cx(v;) represents the

data-dependent baseline, and o = 0.8 throughout the experiments.

Algorithm 2 Compute gradient estimates for the
model parameters and recognition parameters.
AO —0,Ap —0,AXN <0
L0
fort—1to T do
hi ~ g (hi|vy)
lt < log pg(vt, ht) — log g (he|vt)

,C <« ,C + lt
lt <« lt — C)\(Ut)
end for
cp < mean(ly,...,Ilr)
vy < variance(ly, ..., I7)

c—ac+ (1—a)g
ve—av+ (1—a)y

fort < 1to 7T do
lt lt—c

max(1,4/v)
AG — AB + VQ logpg(’vt, ht)

AP — Ap + 1}V g log qg (hy|vy)
AX — AN+ [V ACx(vy)

end for
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4.3.3  FExtension to deep models

The recognition model corresponding to the deep TSBN is shown in Figure 4.1(d).
Two kinds of deep architectures are discussed in Section 4.2.3. We illustrate the
difference of their learning algorithms in two respects: (i) the calculation of the
lower bound; and (i7) the calculation of the gradients.

The top hidden layer is stochastic. If the middle hidden layers are also stochas-
tic, the calculation of the lower bound is more involved, compared with the shallow
model; however, the gradient evaluation remain simple as in (4.11). On the other
hand, if deterministic middle hidden layers (i.e., recurrent neural networks) are em-
ployed, the lower bound objective will stay the same as a shallow model, since the
only stochasticity in the generative process lies in the top layer; however, the gra-
dients have to be calculated recursively through the back-propagation through time

algorithm (Werbos, 1990).

4.4 Related Work

The RBM has been widely used as building block to learn the sequential dependencies
in time-series data, e.g., the conditional-RBM-related models (Taylor et al., 2006;
Taylor and Hinton, 2009), and the temporal RBM (Sutskever and Hinton, 2007).
To make exact inference possible, the recurrent temporal RBM was also proposed
(Sutskever et al., 2009), and further extended to learn the dependency structure
within observations (Mittelman et al., 2014).

In the work reported here, we focus on modeling sequences based on the SBN
(Neal, 1992), which recently has been shown to have the potential to build deep
generative models (Mnih and Gregor, 2014; Gan et al., 2015¢,d). Our work serves as
another extension of the SBN that can be utilized to model time-series data. Similar

ideas have also been considered in Henderson and Titov (2010) and Hinton et al.
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FIGURE 4.2: (Left) Dictionaries learned on the bouncing balls. (Middle) Generated
polyphonic music. (Right) Time evolving for 3 topics learned on STU.

(1995a). However, in Henderson and Titov (2010), the authors focus on grammar
learning, and use a feed-forward approximation of the mean-field VB to carry out
the inference; while in Hinton et al. (1995a), the wake-sleep algorithm was devel-
oped. We apply the model in a different scenario, and develop a fast and scalable
inference algorithm, based on the idea of training a recognition model by leveraging
the stochastic gradient of the variational bound.

There exist two main methods for the training of recognition models. The first
one, termed Stochastic Gradient Variational Bayes (SGVB), is based on a reparam-
eterization trick (Kingma and Welling, 2013; Rezende et al., 2014), which can be
only employed in models with continuous latent variables, e.g., the variational auto-
encoder (Kingma and Welling, 2013) and all the recent recurrent extensions of it
(Bayer and Osendorfer, 2014; Fabius et al., 2014; Chung et al., 2015). The second
one, called Neural Variational Inference and Learning (NVIL), is based on the log-
derivative trick (Mnih and Gregor, 2014), which is more general and can also be
applicable to models with discrete random variables. The NVIL algorithm has been
previously applied to the training of SBN in Mnih and Gregor (2014). Our approach

serves as a new application of this algorithm for a SBN-based time-series model.

72



4.5 Experiments

We present experimental results on four publicly available datasets: the bounc-
ing balls (Sutskever et al., 2009), polyphonic music (Boulanger-Lewandowski et al.,
2012), motion capture (Taylor et al., 2006) and state-of-the-Union (Han et al., 2014).
To assess the performance of the TSBN model, we show sequences generated from
the model, and report the average log-probability that the model assigns to a test
sequence, and the average squared one-step-ahead prediction error per frame.

The TSBN model with W3 = 0 and W, = 0 is denoted Hidden Markov SBN
(HMSBN), the deep TSBN with stochastic hidden layer is denoted DTSBN-S, and
the deep TSBN with deterministic hidden layer is denoted DTSBN-D.

Model parameters were initialized by sampling randomly from N(0,0.0012T),
except for the bias parameters, that were initialized as 0. The TSBN model is trained
using a variant of RMSprop (Graves, 2013), with momentum of 0.9, and a constant
learning rate of 107%. The decay over the root mean squared gradients is set to
0.95. The maximum number of iterations we use is 10°. The gradient estimates were
computed using a single sample from the recognition model. The only regularization
we used was a weight decay of 107, The data-dependent baseline was implemented
by using a neural network with a single hidden layer with 100 tanh units.

For the prediction of v; given vy.;_1, we (7) first obtain a sample from g (h1.¢—1|v1:4-1);
(i) calculate the conditional posterior pg(hi|his_1,v14-1) of the current hidden
state; (4ii) make a prediction for v; using pg(vi|R14,v14-1). On the other hand,
synthesizing samples is conceptually simper. Sequences can be readily generated

from the model using ancestral sampling.
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Table 4.1: Average prediction error for the bouncing balls dataset.

Model Dim Order Pred. Err.
DTSBN-s 100-100 2 2.79 + 0.39
DTSBN-d 100-100 2 2.99 + 0.42
TSBN 100 4 3.07 + 0.40
TSBN 100 1 9.48 + 0.38
RTRBM (Mittelman et al., 2014) 3750 1 3.88 + 0.33
SRTRBM (Mittelman et al., 2014) 3750 1 3.31 £ 0.33

4.5.1 Bouncing balls dataset

We conducted the first experiment on synthetic videos of 3 bouncing balls, where
pixels are binary valued. We followed the procedure in Sutskever et al. (2009), and
generated 4000 videos for training, and another 200 videos for testing. Each video is
of length 100 and of resolution 30 x 30.

The dictionaries learned using the HMSBN are shown in Figure 4.2(Left). Com-
pared with previous work (Sutskever et al., 2009; Boulanger-Lewandowski et al.,
2012), our learned bases are more spatially localized. In Table 4.1, we compare the
average squared prediction error per frame over the 200 test videos, with recurrent
temporal RBM (RTRBM) and structured RTRBM (SRTRBM). As can be seen, our
approach achieves better performance compared with the baselines in the literature.
Furthermore, we observe that a high-order TSBN reduces the prediction error sig-
nificantly, compared with an order-one TSBN. This is due to the fact that by using
a high-order TSBN, more information about the past is conveyed. We also examine
the advantage of employing deep models. Using stochastic, or deterministic hidden

layer improves performances.
4.5.2  Motion capture dataset

In this experiment, we used the CMU motion capture dataset, that consists of mea-
sured joint angles for different motion types. We used the 33 running and walking

sequences of subject 35 (23 walking sequences and 10 running sequences). We fol-
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Table 4.2: Average prediction error obtained for the motion capture dataset.

Model Walking Running
DTSBN-s 4.40 + 0.28  2.56 + 0.40
DTSBN-d 4.62 £+ 0.01 2.84 £ 0.01
TSBN 5.12 £+ 0.50 4.85 £ 1.26
HMSBN 10.77 £ 1.15  7.39 £+ 0.47

ss-SRTRBM (Mittelman et al., 2014) 8.13 + 0.06 5.88 + 0.05
g-RTRBM (Mittelman et al., 2014) 14.41 + 0.38 10.91 + 0.27

FIGURE 4.3: Generated motion trajectories. (Left) Walking. (Middle) Running-
running-walking. (Right) Running-walking.

lowed the preprocessing procedure of Mittelman et al. (2014), after which we were
left with 58 joint angles. We partitioned the 33 sequences into training and testing
set: the first of which had 31 sequences, and the second had 2 sequences (one walking
and another running). We averaged the prediction error over 100 trials, as reported
in Table 4.2. The TSBN we implemented is of size 100 in each hidden layer and
order 1. It can be seen that the TSBN-based models improves over the Gaussian
(G-)RTRBM and the spike-slab (SS-)SRTRBM significantly.

Another popular motion capture dataset is the MIT dataset. To further demon-
strate the directed, generative nature of our model, we give our trained HMSBN
model different initializations, and show generated, synthetic data and the transitions
between different motion styles in Figure 4.3. These generated data are readily pro-
duced from the model and demonstrate realistic behavior. The smooth trajectories
are walking movements, while the vibrating ones are running. Corresponding video

files (AVI) are provided as mocap 1, 2 and 3, which can be downloaded from https:
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https://drive.google.com/drive/u/0/folders/0B1HR6m3IZSO_SWt0aS1oYmlneDQ
https://drive.google.com/drive/u/0/folders/0B1HR6m3IZSO_SWt0aS1oYmlneDQ

Table 4.3: Test log-likelihood for the polyphonic music dataset.

Model Piano. Nott. Muse. JSB.
TSBN -798  -3.67 -6.81 -7.48
RNN-NADE (Boulanger-Lewandowski et al., 2012) -7.05 -2.31 -5.60 -5.56
RTRBM (Boulanger-Lewandowski et al., 2012) -7.36 -2.62 -6.35 -6.35
RNN (Boulanger-Lewandowski et al., 2012) -8.37  -446 -8.13 -8.71

//drive.google.com/drive/u/0/folders/OB1HR6m3IZS0_SWt0aS1loYmlneDQ.
4.5.8  Polyphonic music dataset

The third experiment is based on four different polyphonic music sequences of pi-
ano (Boulanger-Lewandowski et al., 2012), i.e., Piano-midi.de (Piano), Nottingham
(Nott), MuseData (Muse) and JSB chorales (JSB). Each of these datasets are repre-
sented as a collection of 88-dimensional binary sequences, that span the whole range
of piano from A0 to C8.

The samples generated from the trained HMSBN model are shown in Figure 4.2
(Middle). As can be seen, different styles of polyphonic music are synthesized. The
corresponding MIDI files are provided as music 1 and 2, which can be downloaded
from https://drive.google.com/drive/u/0/folders/OB1HR6m3IZS0_SWt0aS1loYmlneDQ.
Our model has the ability to learn basic harmony rules and local temporal coherence.
However, long-term structure and musical melody remain elusive. The variational
lower bound, along with the estimated log-likelihood in Boulanger-Lewandowski et al.
(2012), are presented in Table 4.3. The TSBN we implemented is of size 100 and or-
der 1. Empirically, adding layers did not improve performance on this dataset, hence
no such results are reported. The results of RNN-NADE and RTRBM (Boulanger-
Lewandowski et al., 2012) were obtained by only 100 runs of the annealed importance
sampling, which has the potential to overestimate the true log-likelihood. Our varia-
tional lower bound provides a more conservative estimate. Though, our performance

is still better than that of RNN.
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Table 4.4: Average prediction precision for STU.

Model Dim MP PP
HMSBN 25 0.327 £ 0.002 0.353 £ 0.070
DHMSBN-s 25-25  0.299 £0.001 0.378 +0.006

GP-DPFA (Acharya et al., 2015) 100 0.223 £0.001  0.189 £ 0.003
DRFM (Acharya et al., 2015) 25 0.217 £0.003 0.177 £ 0.010

4.5.4  State of the Union dataset

The State of the Union (STU) dataset contains the transcripts of T' = 225 US State
of the Union addresses, from 1790 to 2014. Two tasks are considered, i.e., prediction

and dynamic topic modeling.

Prediction 'The prediction task is concerned with estimating the held-out words. We
employ the setup in Acharya et al. (2015). After removing stop words and terms that
occur fewer than 7 times in one document or less than 20 times overall, there are 2375
unique words. The entire data of the last year is held-out. For the documents in the
previous years, we randomly partition the words of each document into 80%/20%
split. The model is trained on the 80% portion, and the remaining 20% held-out
words are used to test the prediction at each year. The words in both held-out sets
are ranked according to the probability estimated from (4.5).

To evaluate the prediction performance, we calculate the precision @Qtop-Mas
in Acharya et al. (2015), which is given by the fraction of the top-M words, predicted
by the model, that matches the true ranking of the word counts. M = 50 is used.
Two recent works are compared, GP-DPFA (Acharya et al., 2015) and DRFM (Han
et al., 2014). The results are summarized in Table 4.4. Our model is of order 1. The
column MP denotes the mean precision over all the years that appear in the training
set. The column PP denotes the predictive precision for the final year. Our model

achieves significant improvements in both scenarios.
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Table 4.5: Top 6 most probable words associated with the STU topics.

Topic #29 Topic #30 Topic #130 Topic #64 Topic #70 Topic #74

family officer government generations [raqi Philippines
budget civilized country generation Qaida islands
Nicaragua  warfare public recognize Iraq axis
free enemy law brave Iraqis Nazis
future whilst present crime Al Japanese
freedom gained citizens race Saddam Germans

Dynamic Topic Modeling ~ The setup described in Han et al. (2014) is employed, and
the number of topics is 200. To understand the temporal dynamic per topic, three
topics are selected and the normalized probability that a topic appears at each year
are shown in Figure 4.2 (Right). Their associated top 6 words per topic are shown
in Table 4.5. The learned trajectory exhibits different temporal patterns across the
topics. Clearly, we can identify jumps associated with some key historical events.
For instance, for Topic 29, we observe a positive jump in 1986 related to military
and paramilitary activities in and against Nicaragua brought by the U.S. Topic 30
is related with war, where the War of 1812, World War II and Iraq War all spike
up in their corresponding years. In Topic 130, we observe consistent positive jumps
from 1890 to 1920, when the American revolution was taking place. Three other
interesting topics are also shown in Table 4.5. Topic 64 appears to be related to
education, Topic 70 is about Iraq, and Topic 74 is Axis and World War II. We note

that the words for these topics are explicitly related to these matters.
4.6 Conclusion

We have presented the Deep Temporal Sigmoid Belief Networks, an extension of SBN,
that models the temporal dependencies in high-dimensional sequences. To allow
for scalable inference and learning, an efficient variational optimization algorithm is

developed. Experimental results on several datasets show that the proposed approach
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obtains superior predictive performance, and synthesizes interesting sequences.

In this work, we have investigated the modeling of different types of data individ-

ually. One interesting future work is to combine them into a unified framework for

dynamic multi-modality learning. Furthermore, we can use high-order optimization

methods to speed up inference (Fan et al., 2015).

4.7 Supplementary Material

4.7.1 Learning and Inference Details on TSBN

In order to implement the NVIL algorithm described in Mnih and Gregor (2014), we

need to calculate the lower bound and also the gradients. Specifically, we have the

variational lower bound £ = Zthl Eq, (njv)[l¢], where [; is expressed as

M=

J
= 35 (4 Ry — Tog(1 + exp(v) ) +

Jj=1 1

3
I

J
- [21 (7 hse — 1og(1 + expw;?))))] ,

and we have defined
1) _ T h T b.
77Z}j =wyjhi_1 + w301 + 05,

2 T T
Yyt = Wo, ey + Wy, V1 + Cpy

3 T T T

By further defining

1 1 2 2 3 3
Xg't) = hji — U(%(' ))» Xgnz = Umt — U(wﬁnz)’ Xg‘t) = hj — Uwﬂ(' ))’
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The gradients for the model parameters @ are expressed as

0 10gp9(vt, ht) (1) dlog Pe(’vt, ht) (1) 0 lngg(’Ut, ht) (1)
= . h I = . mt—1, = . s
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The gradients for the recognition parameters ¢ are expressed as

0log qe(hi|vy) 0log g (hi|vy) (3)

3J Jim

0log qs(h|v 0log qg(h|v

Dogteblo) 0y, omtelul) (120)
jm J

Modeling Real-valued Data

When modeling real-valued data, we substitute (4.3) with p(v|h, vi_1) = N (g, diag(a?)),

where

ot = W, By + W, V1 + C, log o = (wh, ) hy + (w),,) v + ¢, (4.21)

and we have W), € RM*/ and W/, e RM*M_ The recognition model remains the

same as in (4.8). Let 7,,, = log o, we obtain

2e27mt

(0 (1) & (Ut — ptme)*
=), (w-t hje —log(1 + exp(tj, ))) -, 510827 + Tt + 5"
j=1

- [Z <¢(-f)hjt —log(1 + eXP(@?)))] : (4.22)

All the gradient calculation remains the same as (4.17)-(4.20), except the following.

0dlog pe(vy, hy) or 0log pe(vy, hy) (1) dlogpe(vy, hy) ()
) ] = Xmt 'Vt P) = XmtUm’t—1, 0 — Amt>
Wam;j Wamm! Cm
dlog pe(vy, hy) (5) 0dlog pe(vy, hy) 5) dlogpe(vy, hy) (5
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where we have defined

4 _ 0log pe(vy, hy) _ Umt = Hmu (6) _ 0log pe(vy, hy) _ (Upt — ,Umt)2 1
mt a/-//mt eQTmt ) X’mt aTmt €2Tmt .

Modeling Count Data

We also introduce an approach for modeling time-series data with count observations,

by replacing (4.3) with p(v,|hy, vi_1) = [[X_, yon, where

exp(w,, by +w,) vi |+ cp)
ymt = M T T . (423)
D exp(wy, by +w, Vi1 4 Cpy)

The recognition model still remains the same as in (4.8). The [, now is expressed as

expwiiz))

M=

J M
lt = 2 (%(?h log(l + eXp ) + Z < mtvmt Uit lOg

j=1 m=1 m/=1

[2 ( i e — log(1 +eXp(w§f)))>] : (4.24)

All the gradient calculations remain the same as (4.17)-(4.20), except the following

0logpe(vi, he) ®), dlogpe(vy, hy) () dlogpe(vy, hy) ()

/5t = XmtUm't—1 = Xt -
anmj mittrJty awélmm’ m ) 0cm m

where we have defined ngz = Ut — Ymit Z%:l Upn/-
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5

Semantic Compositional Networks for Visual
Captioning

In this chapter, I will present semantic compositional network for controllable visual
captionong. The proposed model uses a mixture-of-experts design, and can be con-
sidered as training an ensemble of up to 1000 LSTMs simultaneously. The degree to
which each member of the ensemble is used to generate an image caption is tied to

the image-dependent probability of the corresponding tag.
5.1 Introduction

There has been a recent surge of interest in developing models that can generate
captions for images or videos, termed visual captioning. Most of these approaches
learn a probabilistic model of the caption, conditioned on an image or a video (Mao
et al., 2015; Venugopalan et al., 2015b; Fang et al., 2015; Karpathy and Fei-Fei, 2015;
Vinyals et al., 2015; Xu et al., 2015; Donahue et al., 2015; Venugopalan et al., 2015a;
Pan et al., 2016; Yu et al., 2016). Inspired by the successful use of the encoder-decoder

framework employed in machine translation (Bahdanau et al., 2015; Cho et al., 2014;
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Sutskever et al., 2014), most recent work on visual captioning employs a convolutional
neural network (CNN) as an encoder, obtaining a fixed-length vector representation
of a given image or video. A recurrent neural network (RNN), typically implemented
with long short-term memory (LSTM) units (Hochreiter and Schmidhuber, 1997),
is then employed as a decoder to generate a caption. Aided by advances in CNN
training on large datasets (e.g., ImageNet (Russakovsky et al., 2015)) (Krizhevsky
et al., 2012; Simonyan and Zisserman, 2015; Szegedy et al., 2015; He et al., 2016),
the quality of caption generation has improved significantly using this approach.

Recent work shows that adding explicit high-level semantic concepts (i.e., tags)
of the input image/video can further improve visual captioning. As shown in Wu
et al. (2016a); You et al. (2016), detecting explicit semantic concepts encoded in
an image, and adding this high-level semantic information into the CNN-LSTM
framework, has improved performance significantly. Specifically, Wu et al. (2016a)
feeds the semantic concepts as an initialization step into the LSTM decoder. In You
et al. (2016), a model of semantic attention is proposed which selectively attends
to semantic concepts through a soft attention mechanism (Bahdanau et al., 2015).
On the other hand, although significant performance improvements were achieved,
integration of semantic concepts into the LSTM-based caption generation process is
constrained in these methods; e.g., only through soft attention or initialization of
the first step of the LSTM.

In this paper, we propose the Semantic Compositional Network (SCN) to more
effectively assemble the meanings of individual tags to generate the caption that de-
scribes the overall meaning of the image, as illustrated in Figure 5.1(a). Each triangle
symbol represents an ensemble of tag-dependent weight matrices. The number next
to a semantic concept (i.e., a tag) is the probability that the corresponding semantic
concept is presented in the input image. Similar to the conventional CNN-LSTM-

based image captioning framework, a CNN is used to extract the visual feature
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Generated caption: a man riding skis down a snow covered slope

NNO

Snow 1.000
skiing | 0.993
man 0917
slope | 0.898
person | 0.889
hill 0.808
covered | 0.750
riding | 0.627 :

.
H
|

0!

slope : <e

(a) Overview of the proposed model.

Detected semantic concepts:

person (0.998), baby (0.983), holding (0.952), small
(0.697), sitting (0.638), toothbrush (0.538), child
(0.502), mouth (0.438)

Semantic composition:

1. Only using “baby”: a baby in a

2. Only using “holding”: a person holding a hand

3. Only using “toothbrush”: a pair of toothbrush

4. Only using “mouth”: @ man with a toothbrush

5. Using “baby” and “mouth”: a baby brushing its teeth

Overall caption generated by the SCN:
a baby holding a toothbrush in its mouth

Influence the caption by changing the tag:

6. Replace “baby” with “girl”: a little girl holding a toothbrush in her mouth

7. Replace “toothbrush” with “baseball”: a baby holding a baseball bat in his hand
8. Replace “toothbrush” with “pizza”: a baby holding a piece of pizza in his mouth

(b) Examples of SCN-based image captioning.

excellent performance.

FIGURE 5.1: Model architecture and illustration of semantic composition.

vector, which is then fed into a LSTM for generating the image caption (for simplic-
ity, in this discussion we refer to images, but the method is also applicable to video).
However, unlike the conventional LSTM, the SCN extends each weight matrix of the
conventional LSTM to an ensemble of tag-dependent weight matrices, subject to the
probabilities that the tags are present in the image. These tag-dependent weight
matrices form a weight tensor with a large number of parameters. In order to make
learning feasible, we factorize that tensor to be a three-way matrix product, which

dramatically reduces the number of free parameters to be learned, while also yielding

The main contributions of this paper are as follows: (i) We propose the SCN
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to effectively compose individual semantic concepts for image captioning. (i) We
perform comprehensive evaluations on two image captioning benchmarks, demon-
strating that the proposed method outperforms previous state-of-the-art approaches
by a substantial margin. For example, as reported by the COCO official test server,
we achieve a BLEU-4 of 33.1, an improvement of 1.5 points over the current published
state-of-the-art (You et al., 2016). (i) We extend the proposed framework from
image captioning to video captioning, demonstrating the versatility of the proposed
model. (iv) We also perform a detailed analysis to study the SCN, showing that the

model can adjust the caption smoothly by modifying the tags.
5.2 Related work

We focus on recent neural-network-based literature for caption generation, as these
are most relevant to our work. Such models typically extract a visual feature vector
via a CNN, and then send that vector to a language model for caption generation.
Representative works include Chen and Lawrence Zitnick (2015); Devlin et al. (2015);
Donahue et al. (2015); Karpathy and Fei-Fei (2015); Kiros et al. (2014a,c); Mao

et al. (2015); Vinyals et al. (2015) for image captioning and Donahue et al. (2015)

(

)

(2015);
Venugopalan et al. (2015a,b); Yu et al. (2016); Ballas et al. (2016); Pu et al. (2018);
Dong et al. (2016) for video captioning. The differences of the various methods
mainly lie in the types of CNN architectures and language models. For example,
the vanilla RNN (Elman, 1990) was used in Mao et al. (2015); Karpathy and Fei-Fei
(2015), while the LSTM (Hochreiter and Schmidhuber, 1997) was used in Vinyals
et al. (2015); Venugopalan et al. (2015a,b). The visual feature vector was only fed
into the RNN once at the first time step in Vinyals et al. (2015); Karpathy and
Fei-Fei (2015), while it was used at each time step of the RNN in Mao et al. (2015).

Most recently, Xu et al. (2015) utilized an attention-based mechanism to learn

where to focus in the image during caption generation. This work was followed
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by Yang et al. (2016) which introduced a review module to improve the attention
mechanism and Liu et al. (2016) which proposed a method to improve the correctness
of visual attention. Moreover, a variational autoencoder was developed in Pu et al.
(2016b) for image captioning. Other related work includes Pan et al. (2016) for video
captioning and Anne Hendricks et al. (2016) for composing sentences that describe
novel objects.

Another class of models uses semantic information for caption generation. Specif-
ically, Jia et al. (2015) applied retrieved sentences as additional semantic information
to guide the LSTM when generating captions, while Fang et al. (2015); Wu et al.
(2016a); You et al. (2016) applied a semantic-concept-detection process (Gan et al.,
2016a) before generating sentences. In addition, Fang et al. (2015) also proposes a
deep multimodal similarity model to project visual features and captions into a joint
embedding space. This line of methods represents the current state of the art for
image captioning. Our proposed model also lies in this category; however, distinct
from the aforementioned approaches, our model uses weight tensors in LSTM units.
This allows learning an ensemble of semantic-concept-dependent weight matrices for
generating the caption.

Related to but distinct from the hierarchical composition in a recursive neural
network (Socher et al., 2014), our model carries out implicit composition of con-
cepts, and there is no hierarchical relationship among these concepts. Figure 5.1(b)
illustrates the semantic composition manifested in the SCN model. Specifically, a
set of semantic concepts, such as “baby, holding, toothbrush, mouth”, are detected
with high probabilities. If only one semantic concept is turned on, the model will
generate a description covering only part of the input image, as shown in sentences
1-5 of Figure 5.1(b); however, by assembling all these semantic concepts, the SCN
is able to generate a comprehensive description “a baby holding a toothbrush in its

mouth”. More interestingly, as shown in sentences 6-8 of Figure 5.1(b), the SCN
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also has great flexibility to adjust the generation of the caption by changing certain
semantic concepts.

The tensor factorization method is used to make the SCN compact and simplify
learning. Similar ideas have been exploited in Kiros et al. (2014b); Memisevic and
Hinton (2007); Song et al. (2016a); Sutskever et al. (2011); Taylor and Hinton (2009);
Wu et al. (2016b); Gan et al. (2017a); Wang et al. (2017). In Donahue et al. (2015);
Jin et al. (2015); Kiros et al. (2014a) the authors also briefly discussed using the tensor
factorization method for image captioning. Specifically, visual features extracted
from CNNs are utilized in Donahue et al. (2015); Kiros et al. (2014a), and an inferred
scene vector is used in Jin et al. (2015) for tensor factorization. In contrast to these
works, we use the semantic-concept vector that is formed by the probabilities of
all tags to weight the basis LSTM weight matrices in the ensemble. Our semantic-
concept vector is more powerful than the visual-feature vector (Donahue et al., 2015;
Kiros et al., 2014a) and the scene vector (Jin et al., 2015) in terms of providing explicit
semantic information of an image, hence leading to significantly better performance,
as shown in our quantitative evaluation. In addition, the usage of semantic concepts
also makes the proposed SCN more interpretable than Donahue et al. (2015); Jin
et al. (2015); Kiros et al. (2014a), as shown in our qualitative analysis, since each

unit in the semantic-concept vector corresponds to an explicit tag.

5.3 Semantic compositional networks

5.3.1 Review of RNN for image captioning

Consider an image I, with associated caption X. We first extract feature vector v(I),
which is often the top-layer features of a pretrained CNN. Henceforth, for simplicity,
we omit the explicit dependence on I, and represent the visual feature vector as v.
The length-T' caption is represented as X = (x1,...,@x7), with x;, a 1-of-V (“one
hot”) encoding vector, with V' the size of the vocabulary. The length T typically
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varies among different captions.

The t-th word in a caption, x;, is linearly embedded into an n,-dimensional real-
valued vector w; = W x;, where W, € R"*V is a word embedding matrix (learned),
i.e., wy is a column of W, chosen by the one-hot x;. The probability of caption X

given image feature vector v is defined as

pXID) = | [p(zilao, ..., i1, 0) (5.1)

t=1

where x is defined as a special start-of-the-sentence token. All the words in the
caption are sequentially generated using a RNN, until the end-of-the-sentence symbol
is generated. Specifically, each conditional p(x:|x s, v) is specified as softmax(Vh;),
where h; is recursively updated through h; = H(w;_1, h;_1,v), and hg is defined as
a zero vector (hg is not updated during training). V is the weight matrix connecting
the RNN’s hidden state, used for computing a distribution over words. Bias terms
are omitted for simplicity throughout the paper.

Without loss of generality, we begin by discussing an RNN with a simple tran-
sition function H(-); this is generalized in Section 5.3.4 to the LSTM. Specifically,
H(-) is defined as

h't = O'(Wmt_l + Uht_l +,H4<t = 1) : C’U)7 (52)

where o(-) is a logistic sigmoid function, and J¥(-) represents an indicator function.
Feature vector v is fed into the RNN at the beginning, i.e., at t = 1. W is defined
as the input matrix, and U is termed the recurrent matrix. The model in (5.2) is

illustrated in Figure 5.2(a).
5.3.2  Semantic concept detection

The SCN developed below is based on the detection of semantic concepts, i.e., tags,

in the image under test. In order to detect such from an image, we first select a set
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of tags from the caption text in the training set. Following Fang et al. (2015), we
use the K most common words in the training captions to determine the vocabulary
of tags, which includes the most frequent nouns, verbs, or adjectives.

In order to predict semantic concepts given a test image, motivated by Wu et al.
(2016a); Tran et al. (2016), we treat this problem as a multi-label classification task.
Suppose there are N training examples, and y; = [y;1, . - ., vir] € {0, 1}¥ is the label
vector of the i-th image, where y;;, = 1 if the image is annotated with tag k, and
yir. = 0 otherwise. Let v; and s; represent the image feature vector and the semantic

feature vector for the i-th image, the cost function to be minimized is
N K

%Z{; (vir10g 5ix + (1= i) 1og(1 = s ) (5.3)

where s; = a(f(vi)) is a K-dimensional vector with s; = [s;1,...,sik], o(:) is the
logistic sigmoid function and f(-) is implemented as a multilayer perceptron (MLP).
In testing, for each input image, we compute a semantic-concept vector s, formed

by the probabilities of all tags, computed by the semantic-concept detection model.
5.3.3 SCN-RNN

The SCN extends each weight matrix of the conventional RNN to be an ensemble of
a set of tag-dependent weight matrices, subjective to the probabilities that the tags
are present in the image. Specifically, the SCN-RNN computes the hidden states as

follows

h, = oc(W(s)x;—1 + U(s)hi_1 + 2), (5.4)

where z = W(t = 1) - Cv, and W(s) and U(s) are ensembles of tag-dependent
weight matrices, subjective to the probabilities that the tags are present in the image,
according to the semantic-concept vector s.

Given s € R¥ | we define two weight tensors W € R™*"=XK and Uy € R x K
where ny, is the number of hidden units and n, is the dimension of word embedding.
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(b) SCN-RNN

F1GURE 5.2: Comparison of our proposed model with a conventional recurrent neural
network (RNN) for caption generation.

W(s) € R"*" and U(s) € R"™*" can be specified as

W(s) = > ssWr[k], U(s) = > s, Ur[k], (5.5)

k=1 k=1

where s, is the k-th element in s; W [k] and U [k] denote the k-th 2D “slice” of W
and Uy, respectively. The probability of the k-th semantic concept, s, is associated
with a pair of RNN weight matrices W [k] and U7[k], implicitly specifying KX RNNs
in total. Consequently, training such a model as defined in (5.4) and (5.5) can be
interpreted as jointly training an ensemble of K" RNNs.

Though appealing, the number of parameters is proportional to K, which is
prohibitive for large K (e.g., K = 1000 for COCO). In order to remedy this problem,
we adopt ideas from Memisevic and Hinton (2007) to factorize W(s) and U(s)
defined in (5.5) as
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W(s) =W, - diag(Wys) - W, (5.6)
U(s) = U, - diag(Uy,s) - U, (5.7)
where W, € R W, € R"*K and W, € R"*"= Similiarly, U, € R"<",

U, € R"7*K and U, € R"7*™. n; is the number of factors. Substituting (5.6) and

(5.7) into (5.4), we obtain our SCN with an RNN as

Ti1 = WpsOW,xz;_;, (5.8)
hi_y = Ups ©U.hy_q, (5.9)
z=K(t=1) Cu, (5.10)
hy=0(W,a 1+ Ush, | + 2). (5.11)

where © denotes the element-wise multiply (Hadamard) operator.

W, and W, are shared among all the captions, effectively capturing common lin-
guistic patterns; while the diagonal term, diag(Wys), accounts for semantic aspects
of the image under test, captured by s. The same analysis also holds true for U, .
In this factorized model, the RNN weight matrices that correspond to each semantic
concept share “structure.” This factorized model (termed SCN-RNN) is illustrated
in Figure 5.2(b).

To provide further motivation for and insight into the decompositions in (5.6)

and (5.7), let wyy, represent the kth column of Wy, then

W(s) = 2 sk[Wo - diag(wyr) - W] . (5.12)

A similar decomposition is manifested for U(s). The matrix W, -diag(wy)- W, may
be interpreted as the k-th “slice” of a weight tensor, with each slice corresponding to
one of the K semantic concepts (K total tensor “slices,” each of size ny, x n,). Hence,
via the decomposition in (5.6) and (5.7), we effectively learn an ensemble of K sets of
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RNN parameters, one for each semantic concept. This is efficiently done by sharing
W, and W, when composing each member of the ensemble. The weight with which
the k-th slice of this tensor contributes to the RNN parameters for a given image is
dependent on the respective probability s; with which the k-th semantic concept is
inferred to be associated with image I.

The number of parameters in the basic RNN model (see Figure 5.2(a)) is ny, - (n, +
np), while the number of parameters in the SCN-RNN model (see Figure 5.2(b)) is
ng - (ny + 2K 4 3np,). In experiments, we set ny = ny. Therefore, the additional
number of parameters is 2 - ny, - (n, + K). This increased model complexity also

indicates increased training/testing time.
5.8.4 SCN-LSTM

RNNs with LSTM units (Hochreiter and Schmidhuber, 1997) have emerged as a pop-
ular architecture, due to their representational power and effectiveness at capturing
long-term dependencies. We generalize the SCN-RNN model by using LSTM units.

Specifically, we define hy = H(x;—1,hi—1,v, ) as

i = 0(Wiuis1 + Uighyy + 2), (5.13)
fi=0(Wass1 + Uspahpi g + 2), (5.14)
01 = 0(Woa@os1—1 + Ugghos1 + 2), (5.15)
¢ = 0(Weo@ey 1 + Ughey 1 + 2), (5.16)
ct=10¢+ fiOc 1, (5.17)
h; = o, ® tanh(¢,) (5.18)

where z = W¥(t = 1) - Cv. For » =i, f, 0, ¢, we define
:i'*,tfl = W*bs © W*cwtfl ) (519)

h,; 1 =U4wsOU,hi. (5.20)
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Since we implement the SCN with LSTM units, we name this model SCN-LSTM.
In experiments, since LSTM is more powerful than classifical RNN, we only report
results using SCN-LSTM.

In summary, distinct from previous image-captioning methods, our model has a
unique way to utilize and combine the visual feature v and semantic-concept vector
s extracted from an image I. v is fed into the LSTM to initialize the first step, which
is expected to provide the LSTM an overview of the image content. While the LSTM
state is initialized with the overall visual context v, an ensemble of K sets of LSTM
parameters is utilized when decoding, weighted by the semantic-concept vector s, to

generate the caption.

Model learning Given the image I and associated caption X, the objective function is
the sum of the log-likelihood of the caption conditioned on the image representation:

T
log p(X|T) = Zp(mt|m0, ce, Xy1,0, ). (5.21)

t=1

The above objective corresponds to a single image-caption pair. In training, we

average over all training pairs.
5.83.5  Eaxtension to video captioning

The above framework can be readily extended to the task of video captioning (Don-
ahue et al., 2015; Venugopalan et al., 2015a,b; Yu et al., 2016; Ballas et al., 2016;
Xu et al., 2016). In order to effectively represent the spatiotemporal visual content
of a video, we use a two-dimensional (2D) and a three-dimensional (3D) CNN to
extract visual features of video frames/clips. We then perform a mean pooling pro-
cess Venugopalan et al. (2015b) over all 2D CNN features and 3D CNN features, to
generate two feature vectors (one from 2D CNN features and the other from 3D CNN

features). The representation of each video, v, is produced by concatenating these
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two features. Similarly, we also obtain the semantic-concept vector s by running
the semantic-concept detector based on the video representation v. After v and s
are obtained, we employ the same model proposed above directly for video-caption

generation, as described in Figure 5.2(b).

5.4 Experiments

5.4.1 Datasets

We present results on three benchmark datasets: COCO (Lin et al., 2014), Flickr30k (Young
et al., 2014) and Youtube2Text (Chen and Dolan, 2011). COCO and Flickr30k are
for image captioning, containing 123287 and 31783 images, respectively. Each image
is annotated with at least 5 captions. We use the same pre-defined splits as Karpa-
thy and Fei-Fei (2015) for all the datasets: on Flickr30k, 1000 images for validation,
1000 for test, and the rest for training; and for COCO, 5000 images are used for both
validation and testing. We further tested our model on the official COCO test set
consisting of 40775 images (human-generated captions for this split are not publicly
available), and evaluated our model on the COCO evaluation server. We also follow
the publicly available code (Karpathy and Fei-Fei, 2015) to preprocess the captions,
yielding vocabulary sizes of 8791 and 7414 for COCO and Flickr30k, respectively.
Youtube2Text is used for video captioning, which contains 1970 Youtube clips,
and each video is annotated with around 40 sentences. We use the same splits as
provided in Venugopalan et al. (2015b), with 1200 videos for training, 100 videos
for validation, and 670 videos for testing. We convert all captions to lower case and

remove the punctuation, yielding vocabulary size of 12594 for Youtube2Text.
5.4.2  Training procedure

For image representation, we take the output of the 2048-way pool5 layer from

ResNet-152 (He et al., 2016), pretrained on the ImageNet dataset (Russakovsky
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et al., 2015). For video representation, in addition to using the 2D ResNet-152 to
extract features on each video frame, we also utilize a 3D CNN (C3D) (Tran et al.,
2015) to extract features on each video. The C3D is pretrained on Sports-1M video
dataset (Karpathy et al., 2014), and we take the output of the 4096-way fc7 layer
from C3D as the video representation. We consider the RGB frames of videos as in-
put, with 2 frames per second. Each video frame is resized as 112 x 112 and 224 x 224
for the C3D and ResNet-152 feature extractor, respectively. The C3D feature ex-
tractor is applied on video clips of length 16 frames (as in Karpathy et al. (2014))
with an overlap of 8 frames.

We use the procedure described in Section 5.3.2 for semantic concept detection.
The semantic-concept vocabulary size is determined to reflect the complexity of the
dataset, which is set to 1000, 200 and 300 for COCO, Flickr30k and Youtube2Text,
respectively. Since Youtube2Text is a relatively small dataset, we found that it is
very difficult to train a reliable semantic-concept detector using the Youtube2Text
dataset alone, due to its limited amount of data. In experiments, we utilize additional
training data from COCO.

For model training, all the parameters in the SCN-LSTM are initialized from a
uniform distribution in [-0.01,0.01]. All bias terms are initialized to zero. Word em-
bedding vectors are initialized with the publicly available word2vec vectors (Mikolov
et al., 2013). The embedding vectors of words not present in the pretrained set
are initialzied randomly. The number of hidden units and the number of factors in
SCN-LSTM are both set to 512 and we use mini-batches of size 64. The maximum
number of epochs we run for all the three datasets is 20. Gradients are clipped if the
norm of the parameter vector exceeds 5 (Sutskever et al., 2014). We do not perform
any dataset-specific tuning and regularization other than dropout (Zaremba et al.,
2014) and early stopping on validation sets. The Adam algorithm (Kingma and Ba,
2015) with learning rate 2 x 107 is utilized for optimization. All experiments are
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cOCO
Methods B1 B2 B3 B4 M C
NIC (Vinyals et al., 2015) 0666 0451 0304 0203 = -
m-RNN (Mao et al., 2015) 067 049 035 025  — _
Hard-Attention (Xu et al., 2015) 0.713 0504 0357 0250 0230 —
ATT (You et al., 2016) 0.700 0537 0402 0304 0243  —
Att-CNN+LSTM (Wu et al., 2016a) | 0.74 056 042 031 026  0.94
LSTM-R 06908 0525 0390 0292 0238 0.880
LSTM-T 0.716 0546 0411 0312 0250 0.952
LSTM-RT 0.724 0555 0419 0316 0252 0.970
LSTM-RT, 0.730  0.568 0430 0322 0249 0.977
SON-LSTM 0728 0566 0433 0330 0257 1012
SCN-LSTM Ensemble of 5 0.741 0.578 0.444 0.341 0.261 1.041

Table 5.1: Performance of the proposed model (SCN-LSTM) and other state-of-the-
art methods on the COCO dataset.

implemented in Theano (Theano Development Team, 2016)!.

In testing, we use beam search for caption generation, which selects the top-k
best sentences at each time step and considers them as the candidates to generate
new top-k best sentences at the next time step. We set the beam size to £ = 5 in

experiments.
5.4.3  FEvaluation

The widely used BLEU (Papineni et al., 2002), METEOR (Banerjee and Lavie, 2005),
ROUGE-L (Lin, 2004), and CIDEr-D (Vedantam et al., 2015) metrics are reported in
our quantitative evaluation of the performance of the proposed model and baselines
in the literature. All the metrics are computed by using the code released by the
COCO evaluation server (Chen et al., 2015b). For COCO and Flickr30k datasets, be-
sides comparing to results reported in previous work, we also re-implemented strong
baselines for comparison. The results of image captioning are presented in Table 5.1.

The models we implemented are as follows.

! Code is publicly available at https://github.com/zhegan27/Semantic_Compositional_Nets.
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Flickr30k
Methods B1 B2 B3 B4 M
NIC (Vinyals et al., 2015) 0.663 0.423 0.277 0.183 —
m-RNN (Mao et al., 2015) 0.60 0.41 0.28 0.19 —
Hard-Attention (Xu et al., 2015) 0.669 0.439 0.296 0.199 0.185
ATT (You et al., 2016) 0.647 0.460 0.324 0.230 0.189
Att-CNN+LSTM (Wu et al, 2016a) | 0.73  0.55 040 028  —
LSTM-R 0.657 0.437 0.296 0.201 0.186
LSTM-T 0.691 0483 0.336 0.232 0.202
LSTM-RT 0.706 0.48 0.339 0.235 0.204
LSTM-RT, 0.724 0.523 0.370 0.257 0.210
SCN-LSTM 0.735 0.530 0.377 0.265 0.218
SCN-LSTM Ensemble of 5 0.747 0.552 0.403 0.288 0.223

Table 5.2: Performance of the proposed model (SCN-LSTM) and other state-of-the-
art methods on the Flickr30k dataset.

1. LSTM-R / LSTM-T / LSTM-RT: R, T, RT denotes using different features.
Specifically, R denotes ResNet visual feature vector, 7' denotes Tags (i.e., the
semantic-concept vector), and RT denotes the concatenation of R and T. The
features are fed into a standard LSTM decoder only at the initial time step.

In particular, LSTM-T is the model proposed in Wu et al. (2016a).

2. LSTM-RT5: The ResNet feature vector is sent to a standard LSTM decoder at
the first time step, while the tag vector is sent to the LSTM decoder at every
time step in addition to the input word. This model is similar to You et al.
(2016) without using semantic attention. This is the model closest to ours,

which provides a direct comparison to our proposed model.

3. SCN-LSTM: This is the model presented in Section 5.3.4.

For video captioning experiments, we use the same notation. For example, LSTM-

C means we leverage the C3D feature for caption generation.

97



BLEU-1 BLEU-2 BLEU-3 BLEU-4
cH c40 cH c40 () c40 cd c40
SCN-LSTM | 0.740 | 0.917 | 0.575 | 0.839 | 0.436 | 0.739 | 0.331 | 0.631

Model

ATT 0.731 | 0.900 | 0.565 | 0.815 | 0.424 | 0.709 | 0.316 | 0.599
oV 0.713 | 0.895 | 0.542 | 0.802 | 0.407 | 0.694 | 0.309 | 0.587
MSR Cap 0.715 | 0.907 | 0.543 | 0.819 | 0.407 | 0.710 | 0.308 | 0.601

METEOR ROUGE-L CIDEr-D —
Model

cH c40 cH c40 ch c40 - —
SCN-LSTM | 0.257 | 0.348 | 0.543 | 0.696 | 1.003 | 1.013 — —
ATT 0.250 | 0.335 | 0.535 | 0.682 | 0.943 | 0.958 — —
oV 0.254 | 0.346 | 0.530 | 0.682 | 0.943 | 0.946 — —
MSR Cap 0.248 | 0.339 | 0.526 | 0.680 | 0.931 | 0.937 — -

Table 5.3: Comparison to published state-of-the-art image captioning models on the
blind test set as reported by the COCO test server.

5.4.4 Quantitative results

Performance on COCO and Flickr30k We first present results on the task of image
captioning, summarized in Table 5.1 and Table 5.2. The use of tags (LSTM-T) pro-
vides better performance than leveraging visual features alone (LSTM-R). Combining
both tags and visual features further enhances performance, as expected. Compared
with only feeding the tags into the LSTM at the initial time step (LSTM-RT), LSTM-
RT, yields better results, since it takes as input the tag feature at each time step.
Further, the direct comparison between LSTM-RT, and SCN-LSTM demonstrates
the advantage of our proposed model, indicating that our approach is a better method
to fuse semantic concepts into the LSTM.

We also report results averaging an ensemble of 5 identical SCN-LSTM models
trained with different initializations, which is a common strategy adopted widely You
et al. (2016) (note that now we employ ensembles in two ways: an ensemble of LSTM
parameters linked to tags, and an overaching ensemble atop the entire model). We
obtain state-of-the-art results on both COCO and Flickr30k datasets. Remarkably,

we improve the state-of-the-art BLEU-4 score by 3.1 points on COCO.
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Model B-4 M C

S2VT (Venugopalan et al., 2015a) - 0.292 —

LSTM-E (Pan et al., 2016) 0453 0310 —

GRU-RCN (Ballas et al., 2016) 0.479 0311 0.678
B-RNN (Yu et al., 2016) 0.499 0.326  0.658
LSTM-R 0.448 0.310 0.640
LSTM-C 0.445 0.309 0.644
LSTM-CR 0.469 0.317 0.688
LSTM-T 0.473 0324 0.699
LSTM-CRT 0.475 0316 0.647
LSTM-CRT, 0.469 0.326 0.706
SCN-LSTM 0.502 0.334 0.770
SCN-LSTM Ensemble of 5 0.511 0.335 0.777

Table 5.4: Results on BLEU-4 (B-4), METEOR (M) and CIDEr-D (C) metrices
compared to other state-of-the-art results and baselines on Youtube2Text.

Performance on COCO test server We also evaluate the proposed SCN-LSTM model
by uploading results to the online COCO test server. Table 5.3 shows the comparison
to the published state-of-the-art image captioning models on the blind test set as
reported by the COCO test server. We include the models that have been published
and perform at top-3 in the table. Compared to these methods, our proposed SCN-
LSTM model achieves the best performance across all the evaluation metrics on both

c5 and c40 testing sets.?

Performance on Youtube2Text Results on video captioning are presented in Table 5.4.
The SCN-LSTM achieves significantly better results over all competing methods in
all metrics, especially in CIDEr-D. For self-comparison, it is also worth noting that
our model improves over LSTM-CRT, by a substantial margin. Again, using an

overaching ensemble further enhances performance.

2 Please check https://competitions.codalab.org/competitions/3221#results for the most
recent results.
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5.4.5  Qualitative analysis

Figure 5.3 shows three examples to illustrate the semantic composition on caption
generation. Our model properly describes the image content by using the correctly
detected tags. By manually replacing specific tags, our model can adjust the caption
smoothly. For example, in the left image, by replacing the tag “grass” with “bed”,
our model imagines “a dog laying on top of a bed”. Our model is also able to generate
novel captions that are highly unlikely to occur in real life. For instance, in the middle
image, by replacing the tag “road” and “street” with “ocean”, our model imagines

“a bus driving in the ocean”; in the right image, by replacing the tag “field” with

“snow”, our model dreams “a group of zebras standing in the snow”.

Tags:

dog (1), grass (0.996),
laying (0.97), outdoor
(0.943), next (0.788),
sitting (0.651), lying
(0.542), white (0.507)

Tags:

road (1), decker (1), double
(0.999), bus (0.996), red
(0.996), street (0.926),
building (0.859), driving
(0.796)

Tags:

zebra (1), animal (0.985),
mammal (0.948), dirt
(0.937), grass (0.902),
standing (0.878), group
(0.848), field (0.709)

Caption generated by our model:
a dog laying on the ground next to a frisbee
Semantic composition:
1. Replace “dog” with “cat™:
a white cat laying on the ground
2. Replace “grass” with “bed”:
a white dog laying on top of a bed
3. Replace “grass” with “laptop™
a dog laying on the ground next to a laptop

Caption generated by our model:

a red double decker bus driving down a street
Semantic composition:
1. Replace “red” with “blue”:

a blue double decker bus driving down a street
2. Replace “bus” with “train”:

a red train traveling down a city street
3. Replace “road” and “street” with “ocean”:

a red bus is driving in the ocean

Caption generated by our model:
a herd of zebra standing on top of a dirt field
Semantic composition:
1. Replace “zebra” with “horse”:
a group of horses standing in a field
2. Replace “standing” with “running”:
a herd of zebra running across a dirt field
3. Replace “field” with “snow”:
a group of zebras standing in the snow

FI1GURE 5.3: Illustration of semantic composition. Our model can adjust the caption
smoothly as the semantic concepts are modified.

Tags:

indoor (0.952), dog
(0.828), sitting (0.647),
stuffed (0.602), white
(0.544), next (0.527),
laying (0.509), cat (0.402)

Tags:

snow(1), outdoor (0.992),
covered (0.847), nature
(0.812), skiing (0.61), man
(0.451), pile (0.421),
building (0.369)

fio “,-’*:

Tags:

person (1), cabinet (0.931),
man (0.906), shelf (0.771),
table (0.707), front (0.683),
holding (0.662), food
(0.587)

Generated captions:

SCN-LSTM-T: a dog laying on top of a stuffed
animal

SCN-LSTM: a teddy bear laying on top of a
stuffed animal

Generated captions:

SCN-LSTM-T: a person that is standing in the
SNOw

SCN-LSTM: a stop sign is covered in the snow

Generated captions:

SCN-LSTM-T: a man sitting at a table with a
plate of food

SCN-LSTM: a man is holding a glass of wine

FIGURE 5.4: Detected tags and sentence generation on COCO, by SCN-LSTM-T

and SCN-LSTM.

SCN not only picks up the tags well (and imagines the corresponding scenes),
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but also selects the right functional words for different concepts to form syntactically
correct caption. As illustrated in sentence 6 of Figure 5.1(b), by replacing the tag
“baby” with “girl”, the generated captions not only changes “a baby” to “a little
girl”, but more importantly, changes “in its mouth” to “in her mouth”. In addition,
the SCN also infers the underlying semantic relatedness between different tags. As
illustrated in sentence 4 of Figure 5.1(b), when only switching on the tag “mouth”,
the generated caption becomes “a man with a toothbrush”, indicating the seman-
tic closeness between “mouth”, “man” and “toothbrush”. By further switching on

“baby”, we generate a more detailed description “a baby brushing its teeth”.

Tags: Tags:

book (1), shelf (1), table
(0.965), sitting (0.955),
person (0.955), library
(0.908), room (0.829),
front (0.464)

person (1), table (0.822),
wine (0.672), people
(0.657), man (0.62),
woman (0.601), sitting
(0.502), holding (0.494)

Tags:

grass (1), red (0.982), fire
(0.953), hydrant (0.852), dog
(0.723), standing (0.598),
next (0.476), field (0.341)

Generated captions:

LSTM-R: a young girl is playing a video game
LSTM-RT;: a group of people sitting at a table
SCN-LSTM: two women sitting at a table in a
library

Generated captions:

LSTM-R: a group of people standing around a
table eating food

LSTM-RT,: a group of people sitting at a table
SCN-LSTM: a man pouring wine into a wine
glass

Generated captions:

LSTM-R: a dog that is sitting on the ground
LSTM-RT;: a dog standing next to a fire hydrant
SCN-LSTM: a dog standing next to a red fire
hydrant

FIGURE 5.5: Detected tags and sentence generation on COCO, by LSTM-R, LSTM-

RT5, and SCN-LSTM.

Tags:

man (0.806), game (0.629), playing (0.577),
ball (0.555), football (0.522), men (0.435),
running (0.386), soccer (0.252)

Tags:

man (0.976), person (0.881), guy (0.603),
boy (0.456), gun (0.41), shooting (0.269),
movie (0.232), standing (0.209)

Tags:

man (0.808), person (0.603), street
(0.522), road (0.512), doing (0.424), riding
(0.405), running (0.397), walking (0.296)

Generated captions:

LSTM-CR: a man is running
LSTM-CRT);: a man is hitting a goal
SCN-LSTM: the men are playing soccer

Generated captions:

LSTM-CR: a man is playing a guitar

LSTM-CRT;: a man is playing with a
machine

SCN-LSTM: a man is shooting a gun

Generated captions:
LSTM-CR: a man is walking
LSTM-CRT};: a man is dancing
SCN-LSTM: a man is running

FIGURE 5.6: Detected tags and sentence generation on Youtube2Text, by LSTM-
CR, LSTM-CRT5, and SCN-LSTM.

The above analysis shows the importance of tags in generating captions. However,
SCN generates captions using both semantic concepts and the global visual feature

101



vector. The language model learns to assemble semantic concepts (weighted by
their likelihood), in consideration of the global visual information, into a coherent
meaningful sentence that captures the overall meaning of the image. In order to
demonstrate the importance of visual feature vectors, we train another SCN-LSTM-
T model, which is a SCN-LSTM model without the visual feature inputs, i.e., with
only tag inputs . As shown in the first example of Figure 5.4, the image tagger detects
“dog” with high probability. Using only tag inputs, SCN-LSTM-T can only generate
the wrong caption “a dog laying on top of a stuffed animal”. With additional visual
feature inputs, our SCN-LSTM model correctly replaces “dog” with “teddy bear” .
We further present examples of generated captions on COCO with various other
methods in Figure 5.5, along with the detected tags. As can be seen, our model
often generates more reasonable captions than LSTM-R, due to the use of high-level
semantic concepts. For example, in the first image, LSTM-R outputs an irrelevant
caption to the image, while the detection of “table” and “library” helps our model to
generate more sensible caption. Further, although both our model and LSTM-RT,
utilize detected tags for caption generation, our model often depicts the image content
more comprehensively; LSTM-RT, has a larger potential to miss important details
in the image. For instance, in the 3rd image, the tag “red” appears in the caption
generated by our model, which is missed by LSTM-RT,. This observation might be
due to the fact that the SCN provides a better approach to fuse tag information into
the process of caption generation. Similiar observations can also be found in the

video captioning experiments, as demonstrated in Figure 5.6.
5.5 Conclusion

We have presented Semantic Compositional Network (SCN), a new framework to
effectively compose the individual semantic meaning of tags for visual captioning.

The SCN extends each weight matrix of the conventional LSTM to be a three-
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way matrix product, with one of these matrices dependent on the inferred tags.
Consequently, the SCN can be viewed an ensemble of tag-dependent LSTM bases,
with the contribution of each LSTM basis unit proportional to the likelihood that
the tag is present in the image. Experiments conducted on three visual captioning

datasets validate the superiority of the proposed approach.

5.6 Supplementary Material

5.6.1 More results for Figure 5.4

Tags:

outdoor (1), elephant
(0.995), animal (0.988),
grass (0.962), standing

% < (0.89), rock (0.781), zoo
Sy (0.682), enclosure (0.619)

Tags:

indoor (0.966), table
(0.919), food (0.849),
kitchen (0.714), sitting
(0.545), counter (0.436),
top (0.285), doughnut
(0.251)

; & ‘y

Tags:

outdoor (0.998), building
(0.996), man (0.613), front
(0.434), standing (0.333),
woman (0.255), walking
(0.249), next (0.247)

Generated captions:
SCN-LSTM-T: a couple of elephants standing
next to each other

SCN-LSTM: a large elephant standing next to
a tree

Generated captions:

SCN-LSTM-T: a kitchen with a lot of food on
it

SCN-LSTM: a bunch of doughnuts sitting on
top of a counter

Generated captions:

SCN-LSTM-T: a man standing in front of a
building

SCN-LSTM: a statue of a man standing next to a

Tags:

table (0.997), indoor
(0.893), chair (0.876),
room (0.692), sitting
(0.583), window (0.58),
wooden (0.542), small
(0.344)

Tags:

fence (1), giraffe (0.994),
animal (0.921), wooden
(0.677), fenced (0.66),
standing (0.592), next
(0.493), zoo (0.442)

building

Tags:

grass (1), outdoor (0.992),
giraffe (0.985), mammal
(0.98), animal (0.978), field
(0.93), eating (0.558),
standing (0.508)

Generated captions:

SCN-LSTM-T: a dining room with a table and
chairs

SCN-LSTM: a wooden table with a laptop on it

Generated captions:

SCN-LSTM-T: a giraffe standing next to a
wooden fence

SCN-LSTM: a couple of giraffe standing next
to each other

Generated captions:

SCN-LSTM-T: a giraffe standing on top of a lush
green field

SCN-LSTM: a giraffe is eating grass in a field

FI1GURE 5.7: More detected tags and sentence generation on COCO, by SCN-LSTM-

T and SCN-LSTM.
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5.60.2  More results on image captioning

Tags:

polar (0.999), rock
(0.998), animal (0.997),
bear (0.993), mammal
(0.988), zoo (0.881),
white (0.779), large
(0.748)

Tags:

refrigerator (0.992), food
(0.976), open (0.97),
cabinet (0.953), shelf
(0.582), filled (0.45), door
(0.426), lots (0.329)

Tags:

person (0.925), building
(0.839), people (0.787),
umbrella (0.779), group
(0.704), child (0.519),
standing (0.369), holding
(0.272)

Generated captions:

LSTM-R: a polar bear standing on top of a
rock

LSTM-RT;: a polar bear standing on a rock
SCN-LSTM: a large white polar bear standing
on a rock

Generated captions:

LSTM-R: a display case filled with lots of food
LSTM-RTS;: a shelf full of different kinds of
food

SCN-LSTM: a refrigerator filled with lots of
food and drinks

Generated captions:

LSTM-R: a group of people standing next to
each other

LSTM-RT;: a group of people standing in front
of an umbrella

SCN-LSTM: a group of people standing in the
rain with umbrellas

Tags:

bicycle (1), parked
(0.923), next (0.889),
group (0.829), sidewalk
(0.783), many (0.698), lot
(0.611), rack (0.596)

Tags:

food (0.939), oranges
(0.839), fruit (0.836), slice
(0.792), sliced (0.783),
orange (0.764), plate
(0.759), table (0.704)

-

Tags:

clock (1), building (0.999),
large (0.902), station
(0.876), mounted (0.644),
sitting (0.621), tower
(0.574), building (0.418)

Generated captions:

LSTM-R: a group of motorcycles parked next
to each other

LSTM-RT;: a row of bikes parked in a row
SCN-LSTM: a bunch of bikes parked in a park
lot

Generated captions:

LSTM-R: a bowl of fruit sitting on top of a table
LSTM-RT,;: a bunch of oranges sitting on a
table

SCN-LSTM: a bunch of oranges sitting on a
plate

Generated captions:

LSTM-R: a clock on the wall of a building
LSTM-RT;: a clock on the side of a building
SCN-LSTM: a large clock mounted to the side
of a building

Tags:

dog (1), water (0.998),
beach (0.805), standing
(0.666), walking (0.451),
next (0.435), ocean
(0.301), white (0.225)

Tags:

water (0.985), beach
(0.975), ocean (0.655), next
(0.493), shore (0.324), sand
(0.288), sandy (0.209),
bench(0.204)

Tags:

bench (0.997), fence (0.98),
park (0.974), grass (0.877),
sitting (0.771), wooden
(0.582), next (0.511), green
(0.377)

Generated captions:

LSTM-R: a dog that is playing with a frisbee
LSTM-RT;: a couple of dogs standing on a
beach

SCN-LSTM: a white dog walking on a beach

Generated captions:

LSTM-R: a bench that is sitting on the beach
LSTM-RT;: a person sitting on a bench on a
beach

SCN-LSTM: a wooden bench sitting on top of a
sandy beach

Generated captions:

LSTM-R: a park bench sitting in the middle of a
forest

LSTM-RT;: a park bench sitting on a park bench
SCN-LSTM: a wooden bench sitting in the
middle of a park

Tags:

road (0.958), street
(0.911), green (0.856),
sign (0.601), traffic
(0.549), car (0.401), truck
(0.382), city (0.374)

Tags:

person (0.958), woman
(0.728), sitting (0.708),
bench (0.394), people
(0.381), next (0.371), group
(0.361), front (0.311)

0
e

Tags:

person (0.932), man
(0.787), young (0.458),
black (0.439), white (0.43),
jumping (0.342), riding
(0.242), trick (0.156)

Generated captions:

LSTM-R: a bus that is driving down the road
LSTM-RT;: a bus parked on the side of a road
SCN-LSTM: a green bus driving down a city
street

Generated captions:

LSTM-R: a couple of women standing next to
each other

LSTM-RT;: a couple of people sitting on a toilet
SCN-LSTM: a group of people sitting on a
bench

Generated captions:

LSTM-R: a man sitting on top of a wooden
bench

LSTM-RT;: a man riding a skateboard down a
street

SCN-LSTM: a black and white photo of a
skateboarder doing a trick

FIGURE 5.8: More detected tags and sentence generation on COCO, by LSTM-R,
LSTM-RTy and SCN-LSTM.

104




5.6.3 More results on video captioning

Tags:

playing (0.694), animal (0.673), baby
(0.63), person (0.471), eating (0.419),
something (0.333), food (0.329), hand
(0.311)

Tags:

man (0.807), person (0.733), car (0.442),
driving (0.39), playing (0.382), road
(0.365), moving (0.189), pushing (0.129)

Tags:

woman (0.88), girl (0.732), lady (0.699),
making (0.516), something (0.501), water
(0.267), glass (0.244), drinking (0.204)

Generated captions:

LSTM-CR: a person is eating
LSTM-CRT;: a person is holding a small
animal

SCN-LSTM: a small animal is eating

Generated captions:

LSTM-CR: a man is doing a wheelie
LSTM-CRT;: a man is riding a bike

SCN-LSTM: a man is pushing a car

Generated captions:

LSTM-CR: a woman is pouring sugar in a
glass

LSTM-CRT,;: a woman is pouring water
SCN-LSTM: a woman is drinking
something

Tags:

man (0.635), woman (0.545), riding
(0.541), person (0.465), water (0.465), girl
(0.4), doing (0.387), horse (0.132)

Tags:

man (0.843), person (0.774), doing (0.393),
playing (0.385), open (0.298), gun (0.283),
shooting (0.276), field (0.259)

Tags:

man (0.958), song (0.869), stage (0.866),
singing (0.859), men (0.845), music
(0.826), playing (0.762), guitar (0.759)

Generated captions:

LSTM-CR: a girl is riding a horse
LSTM-CRT;: a woman is riding a horse
SCN-LSTM: a man is riding a horse

Generated captions:

LSTM-CR: a girl is firing a gun
LSTM-CRT;: a girl is shooting
SCN-LSTM: a man is shooting a gun

Generated captions:

LSTM-CR: a group of people are dancing
on stage

LSTM-CRT,;: a man is dancing on stage
SCN-LSTM: a band is performing on stage

Ei

Tags:

doing (0.616), boy (0.557), room (0.554),
playing (0.51), floor (0.493), dancing
(0.491), dance (0.361), kid (0.281)

Tags:

woman (0.829), girl (0.743), doing (0.593),
using (0.408), makeup (0.211), applying
(0.2), face (0.171), hand (0.139)

Tags:

playing (0.776), dog (0.625), floor (0.423),
trying (0.399), woman (0.356), running
(0.293), puppy (0.202), toy (0.182)

Generated captions:
LSTM-CR: a baby is walking
LSTM-CRT;: a baby is dancing
SCN-LSTM: a boy is dancing

Generated captions:

LSTM-CR: a girl is singing
LSTM-CRT;: a woman is playing
SCN-LSTM: a woman is plucking her
eyebrow

Generated captions:

LSTM-CR: a group of girls are playing
with a toy

LSTM-CRT;: the children are playing
SCN-LSTM: a dog is playing with a toy

FIGURE 5.9: More detected tags and sentence generation on Youtube2Text, by
LSTM-CR, LSTM-CRT; and SCN-LSTM.
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6

Triangle Generative Adversarial Networks

In this chapter, I will present Triangle Generative Adversarial Networks (A-GAN)
for cross-domain joint distribution matching. A-GAN consists of two generators
and two discriminators. The generators are designed to learn the two-way condi-
tional distributions between the two domains, while the discriminators are trained

to distinguish real data pairs and two kinds of fake data pairs.
6.1 Introduction

Generative adversarial networks (GANs) (Goodfellow et al., 2014) have emerged as
a powerful framework for learning generative models of arbitrarily complex data
distributions. When trained on datasets of natural images, significant progress has
been made on generating realistic and sharp-looking images (Denton et al., 2015;
Radford et al., 2016). The original GAN formulation was designed to learn the data
distribution in one domain. In practice, one may also be interested in matching two
joint distributions. This is an important task, since mapping data samples from

one domain to another has a wide range of applications. For instance, matching
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the joint distribution of image-text pairs allows simultaneous image captioning and
text-conditional image generation (Reed et al., 2016), while image-to-image transla-
tion (Isola et al., 2017) is another challenging problem that requires matching the
joint distribution of image-image pairs.

In this work, we are interested in designing a GAN framework to match joint
distributions. If paired data are available, a simple approach to achieve this is to
train a conditional GAN model (Reed et al., 2016; Mirza and Osindero, 2014), from
which a joint distribution is readily manifested and can be matched to the empirical
joint distribution provided by the paired data. However, fully supervised data are
often difficult to acquire. Several methods have been proposed to achieve unsuper-
vised joint distribution matching without any paired data, including DiscoGAN (Kim
et al., 2017), CycleGAN (Zhu et al., 2017) and DualGAN (Yi et al., 2017). Adver-
sarially Learned Inference (ALI) (Dumoulin et al., 2017) and Bidirectional GAN
(BiGAN) (Donahue et al., 2017) can be readily adapted to this case as well. Though
empirically achieving great success, in principle, there exist infinitely many possible
mapping functions that satisfy the requirement to map a sample from one domain to
another. In order to alleviate this nonidentifiability issue, paired data are needed to
provide proper supervision to inform the model the kind of joint distributions that
are desired.

This motivates the proposed Triangle Generative Adversarial Network (A-GAN),
a GAN framework that allows semi-supervised joint distribution matching, where
the supervision of domain correspondence is provided by a few paired samples. A-
GAN consists of two generators and two discriminators. The generators are designed
to learn the bidirectional mappings between domains, while the discriminators are
trained to distinguish real data pairs and two kinds of fake data pairs. Both the
generators and discriminators are trained together via adversarial learning.

A-GAN bears close resemblance to Triple GAN (Li et al., 2017b), a recently
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FIGURE 6.1: Tllustration of the Triangle Generative Adversarial Network (A-GAN).

proposed method that can also be utilized for semi-supervised joint distribution
mapping. However, there exist several key differences that make our work unique.
First, A-GAN uses two discriminators in total, which implicitly defines a ternary
discriminative function, instead of a binary discriminator as used in Triple GAN.
Second, A-GAN can be considered as a combination of conditional GAN and ALI,
while Triple GAN consists of two conditional GANs. Third, the distributions char-
acterized by the two generators in both A-GAN and Triple GAN concentrate to
the data distribution in theory. However, when the discriminator is optimal, the
objective of A-GAN becomes the Jensen-Shannon divergence (JSD) among three
distributions, which is symmetric; the objective of Triple GAN consists of a JSD
term plus a Kullback-Leibler (KL) divergence term. The asymmetry of the KL term
makes Triple GAN more prone to generating fake-looking samples (Arjovsky and
Bottou, 2017). Lastly, the calculation of the additional KL term in Triple GAN is
equivalent to calculating a supervised loss, which requires the explicit density form
of the conditional distributions, which may not be desirable. On the other hand,
A-GAN is a fully adversarial approach that does not require that the conditional

densities can be computed; A-GAN only require that the conditional densities can
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be sampled from in a way that allows gradient backpropagation.

A-GAN is a general framework, and can be used to match any joint distributions.
In experiments, in order to demonstrate the versatility of the proposed model, we con-
sider three domain pairs: image-label, image-image and image-attribute pairs, and
use them for semi-supervised classification, image-to-image translation and attribute-
based image editing, respectively. In order to demonstrate the scalability of the model

to large and complex datasets, we also present attribute-conditional image generation

on the COCO dataset (Lin et al., 2014).

6.2 Model

6.2.1 Triangle Generative Adversarial Networks (A-GANs)

We now extend GAN to A-GAN for joint distribution matching. We first consider
A-GAN in the supervised setting, and then discuss semi-supervised learning in Sec-
tion 6.2.3. Consider two related domains, with & and y being the data samples for
each domain. We have fully-paired data samples that are characterized by the joint
distribution p(«,vy), which also implies that samples from both the marginal p(x)
and p(y) can be easily obtained.

A-GAN consists of two generators: (i) a generator G,(y) that defines the con-
ditional distribution p,(z|y), and (i) a generator G,(x) that characterizes the con-
ditional distribution in the other direction p,(y|x). G.(y) and G,(x) may also
implicitly contain a random latent variable z as input, i.e., G,(y, z) and G,(x, 2).
In the A-GAN game, after a sample @ is drawn from p(x), the generator G, produces
a pseudo sample g following the conditional distribution p,(y|x). Hence, the fake
data pair (x,g) is a sample from the joint distribution p,(x,y) = p,(y|z)p(x). Sim-
ilarly, a fake data pair (&,y) can be sampled from the generator G, by first drawing
y from p(y) and then drawing & from p,(x|y); hence (&,y) is sampled from the
joint distribution p,(x,y) = p.(x|y)p(y). As such, the generative process between
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p.(x,y) and p,(x,y) is reversed.

The objective of A-GAN is to match the three joint distributions: p(x,y),
ps(x,y) and p,(x,y). If this is achieved, we are ensured that we have learned a
bidirectional mapping p,(x|y) and p,(y|x) that guarantees the generated fake data
pairs (&,y) and (x,y) are indistinguishable from the true data pairs (x,y). In or-
der to match the joint distributions, an adversarial game is played. Joint pairs are
drawn from three distributions: p(x,y), p.(x,y) or p,(x,y), and two discrimina-
tor networks are learned to discriminate among the three, while the two conditional
generator networks are trained to fool the discriminators.

The value function describing the game is given by

Jnin maxV(Gq, Gy, D1, D2) = Eay)~pielog Di(z, y)] (6.1)

+ Eyw(y),wz(ww)[log ((1 — Dy(,y)) - Da(z, y))]

+ Ew~p<w>,@~py(y\w>[10g ((1 — Di(z,9)) - (1 — Doz, 27)))} :

The discriminator D; is used to distinguish whether a sample pair is from p(zx,y)
or not, if this sample pair is not from p(x,y), another discriminator Dy is used to
distinguish whether this sample pair is from p,(x,y) or p,(x,y). D; and Dy work
cooperatively, and the use of both implicitly defines a ternary discriminative function
D that distinguish sample pairs in three ways. See Figure 6.1 for an illustration of
the adversarial game and Section 6.6.2 for an algorithmic description of the training

procedure.
6.2.2 Theoretical analysis

A-GAN shares many of the theoretical properties of GANs (Goodfellow et al.,
2014). We first consider the optimal discriminators D; and D, for any given gen-

erator G and G,. These optimal discriminators then allow reformulation of objec-
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tive (6.1), which reduces to the Jensen-Shannon divergence among the joint distri-

bution p(x, y), p.(, y) and py(z,y).
Proposition 1. For any fized generator G, and G, the optimal discriminator D,
and Dy of the game defined by V (G, Gy, Dy, Ds) is

Pa(T,Y)
pe(®,y) +py(x,y)

p(z,y)

P(a:,y) +px(w’y) +py(w,y)’ D;(w,:q) =

Di(z,y) =

Proof. The proof is a straightforward extension of the proof in Goodfellow et al.

2014). See Section 6.6.1 for details. O
(2014)

Proposition 2. The equilibrium of V (G, Gy, D1, D) is achieved if and only if

plx,y) = pe(x,y) = py(x,y) with Di(x,y) = % and D} (x,y) = %, and the op-

timum value s —31og 3.

Proof. Given the optimal Dj(zx,y) and Dj(x,y), the minimax game can be refor-

mulated as:

C(Gx,Gy> = max V(Gw,Gy,Dl,Dg) (62)

D1,D2

= —3log3 +3- JSD(z)(w,y),px(-’v,y),py(w,y)> > —3log3, (6.3)

where JSD denotes the Jensen-Shannon divergence (JSD) among three distributions.

See Section 6.6.1 for details. O

Since p(x,y) = p.(x,y) = py(x,y) can be achieved in theory, it can be readily
seen that the learned conditional generators can reveal the true conditional distribu-

tions underlying the data, i.e., p,(z|y) = p(x|y) and p,(y|x) = p(y|z).
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6.2.3 Semi-supervised learning

In order to further understand A-GAN, we write (6.1) as

V =By gllon Du(@,9)] + By 5. los(1 — Di(@,9))] + By, o0 los(1 — Di(,9))]

~
conditional GAN

(6.4)

+ Ep, @) [log Do(2, y)] + Ey, (2,9)[log(1 — Dy(z, 3}))1 . (6.5)

<

BiGAN/ALI

The objective of A-GAN is a combination of the objectives of conditional GAN and
BiGAN. The BiGAN part matches two joint distributions: p,(x,y) and p,(x,y),
while the conditional GAN part provides the supervision signal to notify the BiGAN
part what joint distribution to match. Therefore, A-GAN provides a natural way to
perform semi-supervised learning, since the conditional GAN part and the BiGAN
part can be used to account for paired and unpaired data, respectively.

However, when doing semi-supervised learning, there is also one potential problem
that we need to be cautious about. The theoretical analysis in Section 6.2.2 is based
on the assumption that the dataset is fully supervised, i.e., we have the ground-
truth joint distribution p(x,y) and marginal distributions p(x) and p(y). In the
semi-supervised setting, p(x) and p(y) are still available but p(zx,y) is not. We
can only obtain the joint distribution p;(x,y) characterized by the few paired data
samples. Hence, in the semi-supervised setting, p,(z,y) and p,(x,y) will try to
concentrate to the empirical distribution p;(x,y). We make the assumption that
m(x,y) ~ p(x,y), i.e., the paired data can roughly characterize the whole dataset.
For example, in the semi-supervised classification problem, one usually strives to

make sure that labels are equally distributed among the labeled dataset.
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6.2.4 Relation to Triple GAN

A-GAN is closely related to Triple GAN (Li et al., 2017b). Below we review Triple
GAN and then discuss the main differences. The value function of Triple GAN is

defined as follows:
V :Ep(a:7y) [10gD(iL’, y)] + (]‘ - a)Epz(iz,y) [lOg(l - D(CE7 y))]

+aBy, (g [log(1 = D(2,9))] + Epay)[—logpy (y|)], (6.6)

where « € (0,1) is a contant that controls the relative importance of the two gen-
erators. Let Triple GAN-s denote a simplified Triple GAN model with only the
first three terms. As can be seen, Triple GAN-s can be considered as a com-
bination of two conditional GANs, with the importance of each condtional GAN
weighted by «. It can be proven that Triple GAN-s achieves equilibrium if and only
if p(x,y) = (1 — a)p.(x,y) + ap,(x,y), which is not desirable. To address this
problem, in Triple GAN a standard supervised loss Ry = Epmq)[—logp,(y|x)] is
added. As a result, when the discriminator is optimal, the cost function in Triple

GAN becomes:

275D (pla, y)|(1 ~ )palw,y) + ap,(w,9))) + KL, y)|lp, (2, 9)) + const.
(6.7)

This cost function has the good property that it has a unique minimum at p(x,y) =
pz(x,y) = py(x,y). However, the objective becomes asymmetrical. The second KL
term pays low cost for generating fake-looking samples (Arjovsky and Bottou, 2017).
By contrast A-GAN directly optimizes the symmetric Jensen-Shannon divergence
among three distributions. More importantly, the calculation of Ep 4 ,,)[— log py(y|x)]
in Triple GAN also implies that the explicit density form of p,(y|x) should be
provided, which may not be desirable. On the other hand, A-GAN only requires

that p,(y|z) can be sampled from. For example, if we assume p,(y|z) = §0(y —
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Gy(x, z))p(z)dz, and 0(-) is the Dirac delta function, we can sample y through

sampling z, however, the density function of p,(y|x) is not explicitly available.
6.2.5 Applications

A-GAN is a general framework that can be used for any joint distribution matching.
Besides the semi-supervised image classification task considered in Li et al. (2017b),
we also conduct experiments on image-to-image translation and attribute-conditional
image generation. When modeling image pairs, both p,(x|y) and p,(y|xz) are imple-
mented without introducing additional latent variables, i.e., p,(x|y) = é(x —G.(y)),
py(ylz) = 3y — Gy(x)).

A different strategy is adopted when modeling the image-label/attribute pairs.
Specifically, let « denote samples in the image domain, y denote samples in the
label/attribute domain. y is a one-hot vector or a binary vector when representing
labels and attributes, respectively. When modeling p,(x|y), we assume that x is
transformed by the latent style variables z given the label or attribute vector y, i.e.,
pe(z|y) = §0(x — G.(y, 2))p(z)dz, where p(z) is chosen to be a simple distribution
(e.g., uniform or standard normal). When learning p,(y|x), p,(y|x) is assumed to
be a standard multi-class or multi-label classfier without latent variables z. In order
to allow the training signal backpropagated from D; and D, to G, we adopt the
REINFORCE algorithm as in Li et al. (2017b), and use the label with the maximum
probability to approximate the expectation over y, or use the output of the sigmoid

function as the predicted attribute vector.
6.3 Related work

The proposed framework focuses on designing GAN for joint-distribution matching.
Conditional GAN can be used for this task if supervised data is available. Various

conditional GANs have been proposed to condition the image generation on class
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labels (Mirza and Osindero, 2014), attributes (Perarnau et al., 2016), texts (Reed
et al., 2016; Zhang et al., 2017a; Xu et al., 2017) and images (Isola et al., 2017;
Ledig et al., 2017). Unsupervised learning methods have also been developed for this
task. BiGAN (Donahue et al., 2017) and ALI (Dumoulin et al., 2017) proposed a
method to jointly learn a generation network and an inference network via adversarial
learning. Though originally designed for learning the two-way transition between the
stochastic latent variables and real data samples, BIGAN and ALI can be directly
adapted to learn the joint distribution of two real domains. Another method is
called DiscoGAN (Kim et al., 2017), in which two generators are used to model the
bidirectional mapping between domains, and another two discriminators are used to
decide whether a generated sample is fake or not in each individual domain. Further,
additional reconstructon losses are introduced to make the two generators strongly
coupled and also alleviate the problem of mode collapsing. Similiar work includes
CycleGAN (Zhu et al., 2017), DualGAN (Yi et al., 2017) and DTN (Taigman et al.,
2017). Additional weight-sharing constraints are introduced in CoGAN (Liu and
Tuzel, 2016) and UNIT (Liu et al., 2017).

Our work differs from the above work in that we aim at semi-supervised joint
distribution matching. The only work that we are aware of that also achieves this
goal is Triple GAN. However, our model is distinct from Triple GAN in important
ways (see Section 6.2.4). Further, Triple GAN only focuses on image classification,
while A-GAN has been shown to be applicable to a wide range of applications.

Various methods and model architectures have been proposed to improve and
stabilize the training of GAN, such as feature matching (Salimans et al., 2016;
Zhang et al., 2016¢, 2017b), Wasserstein GAN (Arjovsky et al., 2017), energy-based
GAN (Zhao et al., 2017), and unrolled GAN (Metz et al., 2017) among many other
related works. Our work is orthogonal to these methods, which could also be used to

improve the training of A-GAN. Instead of using adversarial loss, there also exists
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FIGURE 6.2: Toy data experiment on A-GAN and Triple GAN.

work that uses supervised learning (Xia et al., 2017) for joint-distribution matching,
and variational autoencoders for semi-supervised learning (Pu et al., 2016b, 2017b).
Lastly, our work is also closely related to the recent work of Li et al. (2017a); Pu

et al. (2017a); Chen et al. (2018), which treats one of the domains as latent variables.
6.4 Experiments

We present results on three tasks: (7) semi-supervised classification on CIFAR10 (Krizhevsky,
2009); (i) image-to-image translation on MNIST (LeCun et al., 1998) and the
edges2shoes dataset (Isola et al., 2017); and (i) attribute-to-image generation on
CelebA (Liu et al., 2015) and COCO (Lin et al., 2014). We also conduct a toy
data experiment to further demonstrate the differences between A-GAN and Triple
GAN. We implement A-GAN without introducing additional regularization unless

explicitly stated. All the network architectures are provided in the Appendix.
6.4.1 Toy data experiment

We first compare our method with Triple GAN on a toy dataset. We synthesize data
by drawing (z,y) ~ ;N (1, 1) + N (12, o) + 1N (ps, Bs) + 3N (14, Xa), where
K1 = [07 1'5]T? H2 = [_1'570]T> M3 = [1'570]T7 He = [Oa _1'5]T’ =3 = (g 0,(())25)

and 3o = 335 = (%925 9). We generate 5000 (x,y) pairs for each mixture component.
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Table 6.1: Error rates (%) on the partially labeled CIFAR10 dataset.

Algorithm n = 4000

CatGAN (Springenberg, 2015) 19.58 + 0.58
Improved GAN (Salimans et al., 2016)  18.63 + 2.32
ALI (Dumoulin et al., 2017) 17.99 + 1.62
Triple GAN (Li et al., 2017b) 16.99 + 0.36
A-GAN (ours) 16.80 + 0.42

In order to implement A-GAN and Triple GAN-s, we model p,(z|y) and p,(y|z) as

pa(aly) = f 5z — Goly, 2))p(2)dz, py(yle) = j 5y — Gy (e, 2)p(2)dz,  (68)

where both G, and G, are modeled as a 4-hidden-layer multilayer perceptron (MLP)
with 500 hidden units in each layer. p(z) is a bivariate standard Gaussian distribu-
tion. Triple GAN can be implemented by specifying both p,(z|y) and p,(y|z) to be
distributions with explicit density form, e.g., Gaussian distributions. However, the
performance can be bad since it fails to capture the multi-modality of p,(z|y) and
py(y|x). Hence, only Triple GAN-s is implemented.

Results are shown in Figure 6.2. (a) presents the joint distribution p(z,y) of
real data. For (b) and (c), the left and right figure is the learned joint distribu-
tion p,(x,y) and p,(x,y), respectively. The joint distributions p,(z,y) and p,(z,y)
learned by A-GAN successfully match the true joint distribution p(z,y). Triple
GAN-s cannot achieve this, and can only guarantee %(px(x, y) + py(x,y)) matches
p(z,y). Although this experiment is limited due to its simplicity, the results clearly

support the advantage of our proposed model over Triple GAN.
6.4.2 Semi-supervised classification

We evaluate semi-supervised classification on the CIFAR10 dataset with 4000 labels.
The labeled data is distributed equally across classes and the results are averaged
over 10 runs with different random splits of the training data. For fair comparison,

we follow the publically available code of Triple GAN and use the same regularization
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FIGURE 6.3: Generated CIFAR10 samples, where each row shares the same label
and each column uses the same noise.

Table 6.2: Classification accuracy (%) on the MNIST-to-MNIST-transpose dataset.

Algorithm n = 100 n = 1000 All

DiscoGAN — — 15.00+ 0.20
Triple GAN  63.79 + 085 84.93 +1.63 86.70 + 1.52
A-GAN 83.20+ 1.88 88.98+ 1.50 93.34+ 1.46

terms and hyperparameter settings as theirs. Results are summarized in Table 6.1.
Our A-GAN achieves the best performance among all the competing methods. We
also show the ability of A-GAN to disentangle classes and styles in Figure 6.3. A-
GAN can generate realistic data in a specific class and the injected noise vector

encodes meaningful style patterns like background and color.
6.4.3 Image-to-image translation

We first evaluate image-to-image translation on the edges2shoes dataset. Results
are shown in Figure 6.4(bottom). Though DiscoGAN is an unsupervised learning
method, it achieves impressive results. However, with supervision provided by 10%

paired data, A-GAN generally generates more accurate edge details of the shoes. In
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FIGURE 6.4: Image-to-image translation experiments on the MNIST-to-MNIST-
transpose and edges2shoes datasets.

order to provide quantitative evaluation of translating shoes to edges, we use mean
squared error (MSE) as our metric. The MSE of using DiscoGAN is 140.1; with
10%, 20%, 100% paired data, the MSE of using A-GAN is 125.3, 113.0 and 66.4,
respectively.

To further demonstrate the importance of providing supervision of domain cor-
respondence, we created a new dataset based on MNIST (LeCun et al., 1998), where
the two image domains are the MNIST images and their corresponding tranposed
ones. As can be seen in Figure 6.4(top), A-GAN matches images betwen domains
well, while DiscoGAN fails in this task. For supporting quantitative evaluation, we
have trained a classifier on the MNIST dataset, and the classification accuracy of
this classifier on the test set approaches 99.4%, and is, therefore, trustworthy as an
evaluation metric. Given an input MNIST image @, we first generate a transposed
image y using the learned generator, and then manually transpose it back to normal
digits y? , and finally send this new image y” to the classifier. Results are summa-
rized in Table 6.2, which are averages over 5 runs with different random splits of the

training data. A-GAN achieves significantly better performance than Triple GAN
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Input
images
ﬂ BigNose, Attractive, Attractive, Big Nose, Attractive, High Attractive, Attractive,
Black Hair, Smiling, High Black Hair, Chubby, Blond Hair, No | Cheekbones, Brown Hair, Eyeglasses, No
Predicted | Bushy Cheekbones, Male, High Goatee,Male, | Beard, Pointy | Mouth Slightly | Heavy Beard, Straight
attributes Eyebrows, Mouth Slightly | Cheekbones, Oval Face, Nose, Straight | Open, No Makeup, No Hair, Wearing
Male, Young, Open, Wearing | Smiling, Sideburns, Hair, Arched Beard, Oval Beard, Wavy Lipstick,
Sidebumns Lipstick Straight Hair Wearing Hat Eyebrows Face, Smiling | Hair, Young Young
T - v 7 —
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images ' o U 3A ; &

FIGURE 6.5: Results on the face-to-attribute-to-face experiment.

Table 6.3: Results of P@Q10 and nDCG@10 for attribute predicting on CelebA and
COCO.

Dataset CelebA
Method 1% 10% 100%
Triple GAN  40.97/50.74 62.13/73.56 70.12/79.37
A-GAN 53.21/58.39 63.68/75.22 70.37/81.47
Dataset CcOoCO
Method 10% 50% 100%
Triple GAN  32.64/35.91 34.00/37.76 35.35/39.60
A-GAN 34.38/37.91 36.72/40.39 39.05/42.86

st row + pale skin =2nd row 1st row + eyeglasses = 2nd row

BACOoR: « AN DARE o
GRS AR B AR ¢

1st row + mouth slzghtly open = 2nd row 1st row + wearing hat = 2nd row

FIGURE 6.6: Results on the image editing experiment.

and DiscoGAN.
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Input Predicted attributes Generated images Predicted attributes Generated images

baseball, standing, next,
player, man, group,
person, field, sport, ball,
outdoor, game, grass,
crowd

tennis, player, court,
man, playing, field,
racket, sport, swinging,
ball, outdoor, holding,
game, grass

surfing, people, woman,
water, standing, wave,
man, top, riding, sport,
ocean, outdoor, board

skiing, man, group,
covered, day, hill,
person, snow, riding,
outdoor

pizza, rack, blue, grill,
plate, stove, table, pan,
holding, pepperoni,
cooked

red, sign, street, next,
pole, outdoor, stop, grass

sink, shower, indoor,
tub, restroom, bathroom,
small, standing, room,
tile, white, stall, tiled,
black, bath

computer, laptop, room,
front, living, indoor,
table, desk

FIGURE 6.7: Results on the image-to-attribute-to-image experiment.

6.4.4 Attribute-conditional image generation

We apply our method to face images from the CelebA dataset. This dataset consists
of 202,599 images annotated with 40 binary attributes. We scale and crop the images
to 64 x 64 pixels. In order to qualitatively evaluate the learned attribute-conditional
image generator and the multi-label classifier, given an input face image, we first
use the classifier to predict attributes, and then use the image generator to produce
images based on the predicted attributes. Figure 6.5 shows example results. The
1st row is the input images; the 2nd row is the predicted attributes given the input
images; the 3rd row is the generated images given the predicted attributes. Both the
learned attribute predictor and the image generator provides good results. We further
show another set of image editing experiment in Figure 6.6. For each subfigure, we
use a same set of attributes with different noise vectors to generate images. For
example, for the top-right subfigure, all the images in the 1st row were generated
based on the following attributes: black hair, female, attractive, and we then added
the attribute of “sunglasses” when generating the images in the 2nd row. It is
interesting to see that A-GAN has great flexibility to adjust the generated images

by changing certain input attribtutes. For instance, by switching on the wearing hat
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attribute, one can edit the face image to have a hat on the head.

In order to demonstrate the scalablility of our model to large and complex
datasets, we also present results on the COCO dataset. Following Gan et al. (2017e),
we first select a set of 1000 attributes from the caption text in the training set, which
includes the most frequent nouns, verbs, or adjectives. The images in COCO are
scaled and cropped to have 64 x 64 pixels. Unlike the case of CelebA face images,
the networks need to learn how to handle multiple objects and diverse backgrounds.
Results are provided in Figure 6.7. We can generate reasonably good images based
on the predicted attributes. The input and generated images also clearly share a
same set of attributes. We also observe diversity in the samples by simply drawing
multple noise vectors and using the same predicted attributes.

Precision (P) and normalized Discounted Cumulative Gain (nDCG) are two pop-
ular evaluation metrics for multi-label classification problems. Table 6.3 provides
the quantatitive results of P@10 and nDCG@10 on CelebA and COCO, where QFk
means at rank k (see Section 6.6.4 for definitions). For fair comparison, we use the
same network architecures for both Triple GAN and A-GAN. A-GAN consistently
provides better results than Triple GAN. On the COCO dataset, our semi-supervised
learning approach with 50% labeled data achieves better performance than the re-
sults of Triple GAN using the full dataset, demonstrating the effectiveness of our
approach for semi-supervised joint distribution matching. More results for the above

experiments are provided in Section 6.6.3.
6.5 Conclusion

We have presented the Triangle Generative Adversarial Network (A-GAN), a new
GAN framework that can be used for semi-supervised joint distribution matching.
Our approach learns the bidirectional mappings between two domains with a few

paired samples. We have demonstrated that A-GAN may be employed for a wide
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range of applications. Omne possible future direction is to combine A-GAN with
sequence GAN (Yu et al., 2017) or textGAN (Zhang et al., 2017b) to model the joint

distribution of image-caption pairs.

6.6 Supplementary Material

6.6.1 Detailed theoretical analysis

Proposition 3. For any fized generator G, and G, the optimal discriminator D,

and Dy of the game defined by the value function V (G, Gy, D1, Ds) is

pa(,y)
pa(x,y) +py(x,y)

p(z,y)

(@, Y) + pa(@, ) + py(T,y) Di(x,y) =

Di(x,y) =

Proof. The training criterion for the discriminator D; and D,, given any generator

G, and G, is to maximize the quantity V (G4, Gy, D1, Ds):

V(G., Gy, Dy, D) = ( ] p(x,y)log Dy (x, y)dxdy + J f pe(x,y)log(l — Di(x,y))dxdy
Yy rJy

+J F pz(x,y)log Do(x, y)dxdy +J f py(x,y)log(l — Dy(z, y))dxdy

Yy

+J ( py(,y)log(l — Dy(x,y))dxdy .

Following Goodfellow et al. (2014), for any (a,b) € R*\{0,0}, the function y —

alogy + blog(l — y) achieves its maximum in [0,1] at -%5. This concludes the

proof. n

Proposition 4. The equilibrium of V(G,,Gy, D1, D) is achieved if and only if

p(x,y) = pe(x,y) = py(x,y) with D} (x,y) = 3 and Di(x,y) = 3, and the op-

timum value s —3log 3.

Proof. Given the optimal Dj(x,y) and Dj(x,vy), the minimax game can be refor-
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mulated as:

C(Gl‘aGy) = glalD)C V(Gl‘aGZth?DQ) (69)
p(x,y)
By | 1o 6.10
(@y)~p( y)[ gp(m,y)+pz(w,y)+py(w,y)] (010
pa(x,y)
N b 6.11
(@) ~pa y)[ gp(w,y)+px(w,y)+py(w’y>] o1
py(m’y)
+ Ereyynie| o8 , 6.12
(@.)~py( y)[ p(m,y)+px(m,y)+py(w7y)] 012
Note that
€T, + Pz (T, + x,
C(GI,GQ)Z—310g3+KL<p(w,y)Hp( 2 p(gy) Pt y)) (6.13)

O (e [ RS SR IRS HCR 1P

N KL<py(w7y)Hp(w,y) +pz(a; Y) +py(w,y)> C (615)

Therefore,

.....

divergence. m,...,m, are weights that are selected for the probability distribution
P1,P2, -+, Pn, and H(p) is the entropy for distribution p. In the three-distribution

case described above, we set n = 3 and m = my = w3 = %

For p(x,y) = p.(x,y) = py(x,y), we have Di(x,y) = 3, Dj(x,y) = 5 and
C(G,,Gy) = —3log 3. Since the Jensen-Shannon divergence is always non-negative,
and zero iff they are equal, we have shown that C* = —3log 3 is the global minimum
of C(G,,G,) and that the only solution is p(x,y) = p.(z,y) = p,(x,y), i.e., the

generative models perfectly replicating the data distribution. O]
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Algorithm 3 A-GAN training procedure.

0,, 0, < initialize network parameters

repeat
(a:l(j ), y;”), o (x :E)M), yz(gM)) ~p(z,y) > Get M paired data samples
ch(}), o ’ng ~ p(x) > Get M unpaired data samples
(1) (M)

Yu'sooYu o~ P(Y)

&0 ~ pe(x|y = yff)), i=1,...,.M > Sample from the conditionals
9 ~pylz =), j=1,....M

A — Dz, y;(f) i=1,...,M = Compute discriminator predictions

ol <—D1(w£),y5)), i=1,...,M
P — Do( 3),y£)) fgé)) — Dy(2, g, (i— 1,....M .
Edl — MZl 110gp1 -+ j:llog(l—pfz)— MZk 1 log(1 —piy)

— Z logp 1 jj‘il log(1 — p22) > Compute discriminator loss
Egl M Zl . log pg) — i jNil log(1 — p21 ) > Compute generator loss
M N
‘ng <~ _M Zizl log p13 - M Zj:l log p§]2
0, —6,—Vo, (L4 + Ly,) > Gradient update on discriminator networks
0, —0,—Vo, (Ly +Ly) > Gradient update on generator networks

until convergence

Input
images [
ﬂ Attractive. ) Bags Under Blond Hair, Attractive, Attractive Brown Hair,

Smiling,High | Mouth Slightly | Black Hair, No | Eyes, No Mouth Slightly | Black Hair, Blond l-;/ai’r No Bushy

Predicted | Cheekbones, Open, Rosy Beard, Young, | Beard, Pointy | Open, Narrow | Male,No > Eyebrows,
No Beard Cheek ‘ Nose, Smiling, | Eyes, N Beard, Poi Beard, Pointy | oy

attributes 0 beara, €eKs, Wean.ng ose, smiling, yes, No eard, Oll’lty Nose Smllmg 12
Oval Face, Wearing Lipstick Wearing Beard, Straight | Nose, Straight Strai ’ht Hair ” | Cheekbones,
Young Lipstick Lipstick Hair, Young Hair & Young

Generated
images

FIGURE 6.8: Additional results on the face-to-attribute-to-face experiment.

6.6.2 A-GAN training procedure
6.6.3 Additional experimental results

6.6.4 FEvaluation metrics for multi-label classification

Precision@k  Precision at k is a popular evaluation metric for multi-label classifica-

tion problems. Given the ground truth label vector y € {0,1}* and the prediction
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1st row + pale skin = 2nd row Ist row + eyeglasses = 2nd row

NERO THBH Q26000
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1st row + mouth slightly open = 2nd row

FIGURE 6.9: Additional results on the image editing experiment.

Input Predicted attributes Generated images Input Predicted attributes Generated images

airport, airplane, cloudy,
large, tarmac, parked,
jet, commercial, white,
gear, plane, field, flying,
landing, aircraft,
runway, air, transport

Building, standing, tall,
castle, city, top, object,
outdoor, tower

furniture, sitting, small,
room, living, white,
hotel, indoor, table,
photo, rug, decorated,
window, cabinet

mammal, standing,
animal, field, walking,
outdoor, grass

large, red, street,
parking, standing, next,
decker, tall, train,
parked, city, outdoor,
transport, tour, road

kite, people, young,
blue, boy, standing,
playing, colorful, child,
air, outdoor, holding,
girl, flying

F1GURE 6.10: Additional results on the image-to-attribute-to-image experiment.

FIGURE 6.11: Attribute-conditional image generation on the COCO dataset. Input
attributes are omited for brevity.
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g € [0,1]F, PQk is defined as

1
Pak:= o > (6.17)
leranky (9)
Precision at k performs evaluation that counts the fraction of correct predictions in

the top k scoring labels.

nDCG@k normalized Discounted Cumulative Gain (nDCG) at rank £ is a family
of ranking measures widely used in multi-label learning. DCG is the total gain

accumulated at a particular rank p, which is defined as

0
Y
pcGak:= Y L. (6.18)
leranky (9) log(l t 1)

Then normalizing DCG by the value at rank £ of the ideal ranking gives

DCGak
N@kﬁzzmmmmm T (6.19)
=1 log(1+1)

6.6.5 Detailed network architectures

For the CIFAR10 dataset, we use the same network architecture as used in Triple
GAN (Li et al., 2017b). For the edges2shoes dataset, we use the same network
architecture as used in the pix2pix paper (Isola et al., 2017). For other datasets, we

provide the detailed network architectures below.

Table 6.4: Architecture of the models for A-GAN on MNIST. BN denotes batch

normalization.
Generator A to B Generator B to A Discriminator
Input 28 x 28 Gray Image Input 28 x 28 Gray Image Input two 28 x 28 Gray Image

5 x 5 conv. 32 ReLU, stride 2, BN | 5 x 5 conv. 32 ReLU, stride 2, BN | 5 x 5 conv. 32 ReLU, stride 2, BN
5 x 5 conv. 64 ReLU, stride 2, BN | 5 x 5 conv. 64 ReLU, stride 2, BN | 5 x 5 conv. 64 ReLU, stride 2, BN
5 x 5 conv. 128 ReLU, stride 2, BN | 5 x 5 conv. 128 ReLU, stride 2, BN | 5 x 5 conv. 128 ReLU, stride 2, BN
Dropout: 0.1 Dropout: 0.1 Dropout: 0.1
MLP output 28 x 28, sigmoid MLP output 28 x 28, sigmoid MLP output 1, sigmoid
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Table 6.5: Architecture of the models for A-GAN on CelebA. BN denotes batch
normalization. 1ReLLU denotes Leaky ReL.U.

Generator A to B

Generator B to A

Discriminator

Input 64 x 64 x 3 Image
4 x 4 conv. 32 IReLU, stride 2, BN

Input 1 x 40 attributes, 1 x 100 noise

Input 64 x 64 Image and 1 x 40 attributes

4 x 4 conv. 64 IReLU, stride 2, BN
4 x 4 conv. 128 1ReLU, stride 2, BN
4 x 4 conv. 256 IReLU, stride 2, BN
4 x 4 conv. 512 1ReLU, stride 2, BN
MLP output 512, IReLU
MLP output 40, sigmoid

concat input
MLP output 1024, IReLU, BN
MP output 8192, IReLU, BN
concat attributes
5 x 5 deconv. 256 ReLU, stride 2, BN
5 x 5 deconv. 128 ReLU, stride 2, BN
5 x 5 deconv. 64 ReLU, stride 2, BN
5 x 5 deconv. 3 tanh, stride 2, BN

concat two inputs
5 x 5 conv. 64 ReLU, stride 2, BN
5 x 5 conv. 128 ReLU, stride 2, BN

5 x 5 conv. 256 ReLU, stride 2, B
5 x 5 conv. 512 ReLU, stride 2, BN

MLP output 1, sigmoid

Table 6.6: Architecture of the models for A-GAN on COCO. BN denotes batch
normalization. 1ReLLU denotes Leaky ReL.U.

Generator A to B

Input 64 x 64 x 3 Image

Generator B to A

Discriminator

Input 1 x 40 attributes, 1 x 100 noise

Input 64 x 64 Image and 1 x Dim attributes

4 x 4 conv. 32 IReLU, stride 2, BN
4 x 4 conv. 64 IReLU, stride 2, BN
4 x 4 conv. 128 IReLU, stride 2, BN
4 x 4 conv. 256 IReLU, stride 2, BN
4 x 4 conv. 512 IReLU, stride 2, BN

ResNet Block

1 x 1 conv. 512 IReLU, stride 1, BN

4 x 4 conv. Dim sigmoid, stride 4

concat inputs
MLP output 16384, BN
ResNet Block
4 x 4 deconv. 512, stride 2
3 x 3 conv. 512, stride 1, BN
ResNet Block
4 x 4 deconv. 256, stride 2
3 x 3 conv. 256, stride 1, BN
4 x 4 deconv. 128 ReLU, stride 2
3 x 3 conv. 128 ReLU, stride 1, BN
4 x 4 deconv. Dim, stride 2
3 x 3 conv. Dim tanh, stride 1

concat conditional inputs

5 x 5 conv. 64 ReLU, stride 2, BN

5 x 5 conv. 128 ReLU, stride 2, BN
5 x 5 conv. 256 ReLU, stride 2, BN
5 x 5 conv. 512 ReLU, stride 2, BN

MLP output 1, sigmoid
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7

Conclusion and Future Work

7.1 Summary of Contributions

Learning deep generative models is a fast-moving research field. In this thesis, I
mainly discuss the models and applications that I have worked on during my Ph.D.

study. Specifically, the contributions of this thesis are summarized as follows:

e In Chapter 2, we present a deep generative model for binary image modeling.
The proposed deep model is designed by stacking sigmoid belief networks. By
exploring the idea of data augmentation, we develop a fully Bayesian algorithm
for efficient learning of layer-wise model parameters, and inference of local

latent variables.

e In Chapter 3, we present a deep generative model for topic modeling. The pro-
posed deep model employs a deep sigmoid belief network or restricted Boltz-
mann machine, the bottom binary layer of which selects topics for use in a
Poisson factor analysis model. Scalable inference algorithms are derived by
applying Bayesian conditional density filtering and stochastic gradient ther-

mostats.
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e In Chapter 4, we present a deep generative model for sequence modeling. The
proposed deep model is designed by constructing a hierarchy of temporal sig-
mod belief networks, defined as a sequential stack of sigmoid belief networks.
Scalable learning and inference algorithms are derived by introducing an infer-
ence network that yields fast sampling from the variational posterior. Both the
generative model and the inference network are trained together by maximizing

the variational lower bound.

e In Chapter 5, we present a deep generative model for visual captioning. The
proposed model has no latent variable, and can be considered as a new vari-
ant of LSTM that provides an efficient way to impose side information into
the network. The proposed model uses a mixture-of-experts design, and can
be considered as training an ensemble of up to 1000 LSTMs simultaneously.
Specifically, semantic concepts (i.e., tags) are detected from the image, and the
probability of each tag is used to compose the parameters in an LSTM network.
The degree to which each member of the ensemble is used to generate an image

caption is tied to the image-dependent probability of the corresponding tag.

e In Chapter 6, we present a deep generative model for joint distribution match-
ing. The proposed model is based on generative adversarial networks (GANS).
Specifically, the proposed Triangle GAN model consists of four neural networks,
two generators and two discriminators. The generators are designed to learn
the two-way conditional distributions between the two domains, while the dis-
criminators implicitly define a ternary discriminative function, which is trained
to distinguish real data pairs and two kinds of fake data pairs. The generators

and discriminators are trained together using adversarial learning.
Besides the SBN and GAN models described in this theis, during my Ph.D. study,

I have also studied variational autoencoders (VAEs) (Pu et al., 2016b, 2017b,a). I
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have also investigated stochastic gradient MCMC methods (Chen et al., 2016a; Zhang
et al., 2017d), with applications in shape classification (Li et al., 2016b) and language
modeling (Gan et al., 2017d). Furthermore, I have also studied deep learning tech-
niques for learning better sentence and paragraph representations (Gan et al., 2017¢;
Zhang et al., 2017c; Gan et al., 2017b; Zhang et al., 2018b). At the beginning of
the Ph.D. study, I have also conducted research in gene expression analysis using

discriminative factor models (Gan et al., 2015a).
7.2 Future Directions

Deep generative models, and more generally, deep learning, is an exciting field to
study in, with lots of new work coming out every week on arXiv. Below I list a few

potential research directions for future work.

e Combination of VAE and GAN: VAE and GAN are considered as two
distinct paradigms for deep generative modeling. Recently, there are many
works that attempt to make formal connections between them in a principled
way. This is an interesting and active research problem, providing us new tools

to connect variational inference and adversarial learning.

e RL for text generation: Using Reinforcement Learning (RL) for text gen-
eration, such as image captioning and machine translation, has achieved lots
of attention, since the text generation problem can be naturally casted as a
sequential decision making process, thus RL can be applied. However, all the
exisiting RL models for text generation requires careful initialization of the
model using maximum likelihood training. Research can be conducted to fur-
ther understand this problem and improve the performance via the usage of

more advanced RL tools.
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e GAN for text generation: GAN for image synthesis has achieved tremen-
dous success. However, GAN for text generation is a very challenging problem,
due to the discrete nature of text, making it difficult to propagate the gradient
from the discriminator back to the generator. Currently, there are mainly two
ways to explore GAN for text generation. One of them is to use RL tech-
niques to backpropagate gradients, considering the output of the discriminator
as the reward for the policy network (i.e., generator) training. Another way is
to use efficient gradient approximators to approximate the non-differentiable
sampling operations. However, developing a robust GAN model for long text

generation is still an open research problem.

In terms of the applications, below I also list a few potential interesting research

directions.

e Vision-to-text generation: Image and video captioning has been investi-
gated extensively in the literature. Most existing approaches focus on gener-
ating a short one-sentence description for the whole image or video. However,
typically in a video there are several events happening, organzied in a sequen-
tial order. How to generate a coherent long paragraph to describe the whole
video is an open research problem. Further, rather than generate a chunk of
text, visual dialog is another interesting research direction, which aims to gen-
erate a dialogue to mimic the way how a conversation agent can be interacted

with humans.

e Text-to-vision synthesis: A lot of progresses have been made in generating
an image grounded on an input textual description. However, how to generate
coherent high-resolution images which potentially contain multiple objects is
still an open research problem. Further, generating a whole video based on the

text input is also a very interesting and challenging future research direction.
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