

AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks

Introduction

- Automatically generating images according to natural language descriptions is a fundamental problem in many applications, such as art generation and computer-aided design.
- Current text-to-image GAN models condition only on the global sentence vector which lacks important fine-grained information at the word level and prevents the generation of high quality images.

Our AttnGAN

✤ A novel attentional generative network

 \blacktriangleright Progressively generate low-to-high resolution images with m generators

\blacktriangleright Attention model F^{attn}

- For each region feature of previous generated image, query its most relevant words. 0
- Synthesizes fine-grained details at different sub-regions of the image by paying attentions to the relevant words in the natural language description.

> The final objective function

$$\mathcal{L} = \sum_{i=0}^{m-1} \mathcal{L}_{GAN}^{i} + \lambda \mathcal{L}_{DAMSM}$$

Tao Xu¹, Pengchuan Zhang², Qiuyuan Huang², Han Zhang³, Zhe Gan², Xiaolei Huang¹, Xiaodong He⁴ ¹Lehigh University ²Microsoft Research ³Rutgers University ⁴JD AI Research

A Deep Attentional Multimodal Similarity Model (DAMSM)

- \succ **Text encoder** (LSTM) extracts word features e_1, e_2, \dots, e_T
- > Image encoder (CNN) extracts image region features $v_1, v_2, ..., v_N$
- > Attention mechanism: for the i-th word, compute its region-context vector c_i ,

$$c_i = \sum_{j=0}^{N-1} \alpha_j v_j$$
, where $\alpha_j = \frac{\exp}{\sum_{k=0}^{N-1} \sum_{k=0}^{N-1} \sum_{k=0}^$

- $\bar{s}_{i,i}$ is the dot product between features of the i-th word and the j-th image region
- > The similarity between the image (Q) and the sentence (D)

$$R(Q,D) = \log\left(\sum_{i=0}^{T-1} \exp(\gamma_2 R(c_i, e_i))\right)$$

- $R(c_i, e_i)$ is the cosine similarity between c_i and e_i
- > The negative log posterior probability that the images are matched with their ground truth text descriptions

$$\mathcal{L}_{DAMSM} = -\sum_{i=1}^{M} \log P(D_i|Q_i) \text{, where } P(D_i|Q_i) = \frac{\exp(\gamma_3 R(Q_i, D_i))}{\sum_{j=1}^{M} \exp(\gamma_3 R(Q_i, D_j))}$$

- M is the number of training pairs
- $\lambda, \gamma_1, \gamma_2$ and γ_3 are hyper-parameters
- The \mathcal{L}_{DAMSM} provides a fine-grained image-text matching loss for training the generator

 $p(\gamma_1 \overline{s}_{i,j})$ $\exp(\gamma_1 \bar{s}_{i,k})$

 (i_i)

Results

- The DAMSM loss is important
- Stacking more attention models helps Method

Attention maps on CUB (left) and COCO (right)

Novel images on CUB (left) and COCO (right)

Compare with state-of-the-art

Dataset	GAN-INT-CLS	GAWWN	StackGAN	StackGAN-v2	PPGN	Our AttnGAN
CUB	2.88 ± .04	3.62 ± .07	$3.70 \pm .04$	3.82 ± .06	١	4.36 ± .03
COCO	7.88 ± .07	١	8.45 ± .03	١	9.58 ± .21	25.89 ± .47

- Vanilla DCGAN on CUB:
- Our AttnDCGAN on CUB:

	inception score	R-precision(%)
Ν	$3.98 \pm .04$	10.37 ± 5.88
	$4.19 \pm .06$	16.55 ± 4.83
	$4.35 \pm .05$	34.96 ± 4.02
	$4.35 \pm .04$	58.65 ± 5.41
	$4.29 \pm .05$	$63.87 {\pm}~4.85$
	$4.36 \pm .03$	67.82 ± 4.43 *

• Generalize the proposed attention mechanisms to DCGAN framework 2.47 inception score 3.69% R-precision **4.12** inception score 38.45% R-precision