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INTRODUCTION

Problem of interest: Developing deep generative models for sequential data.
Main idea:
•Constructing a hierarchy of Temporal Sigmoid Belief Networks (TSBNs).
•TSBN is defined as a sequential stack of Sigmoid Belief Networks (SBNs).
Contributions:
•A generalization of Hidden Markov Models (HMMs) and Linear Dynamical
Systems (LDS).
•A probabilistic construction of Recurrent Neural Networks (RNNs).
•Closely related to Temporal Restricted Boltzmann Machine (TRBM), but our
model has a directed generative process.
•Can be utilized to model various data, e.g., binary, real-valued and counts.
Challenge: Designing scalable learning and inference algorithms.
Solution:
•Stochastic Variational Inference (SVI).
•Design a recognition model for fast inference.

MODEL FORMULATION

Sigmoid Belief Network: An SBN models a binary visible vector v ∈ {0, 1}M ,
in terms of binary hidden variables h ∈ {0, 1}J and weights W ∈ RM×J with

p(vm = 1|h) = σ(w>mh + cm) p(hj = 1) = σ(bj) (1)
SBN is closely related to RBM, which is a Markov random field with the same
bipartite structure as the SBN.
Temporal SBN: Assume a length-T binary visible sequence, the tth time step
of which is denoted vt ∈ {0, 1}M . The TSBN describes the joint probability as

pθ(V,H) = p(h1)p(v1|h1) · ∏Tt=2p(ht|ht−1,vt−1) · p(vt|ht,vt−1) (2)
Each conditional distribution is expressed as

p(hjt = 1|ht−1,vt−1) = σ(w>1jht−1 +w>3jvt−1 + bj) (3)
p(vmt = 1|ht,vt−1) = σ(w>2mht +w>4mvt−1 + cm) (4)

•TSBN can be viewed as a HMM with an exponentially large state space and a
highly structured transition matrix.
•TSBN allows for fast sampling of “fantasy” data from the inferred model.
Extensions:
•Modeling real-valued data: p(vt|ht,vt−1) = N (µt, diag(σ2

t)), where
µmt = w>2mht +w>4mvt−1 + cm log σ2

mt = (w′2m)>ht + (w′4m)>vt−1 + c′m
(5)

•Modeling counts: p(vt|ht,vt−1) = ∏M
m=1 y

vmt
mt , where

ymt = exp(w>2mht +w>4mvt−1 + cm)
∑M
m′=1 exp(w>2m′ht +w>4m′vt−1 + cm′)

(6)

•Going deep: Adding stochastic or deterministic hidden layers.
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Figure 1: Graphical model for the Deep Temporal Sigmoid Belief Network. (a,b) Generative and recognition
model of the TSBN. (c,d) Generative and recognition model of a two-layer Deep TSBN.

as a deep SBN [15] with temporal feedback loops on each layer. Both stochastic and deterministic
hidden layers are considered.

Compared with previous work, our model: (i) can be viewed as a generalization of an HMM with
distributed hidden state representations, and with a deep architecture; (ii) can be seen as a gener-
alization of a LDS with complex non-linear dynamics; (iii) can be considered as a probabilistic
construction of the traditionally deterministic RNN; (iv) is closely related to the TRBM, but it has a
fully generative process, where data are readily generated from the model using ancestral sampling;
(v) can be utilized to model different kinds of data, e.g., binary, real-valued and counts.

The “explaining away” effect described in [17] makes inference slow, if one uses traditional in-
ference methods. Another important contribution we present here is to develop fast and scalable
learning and inference algorithms, by introducing a recognition model [12, 13, 14], that learns an
inverse mapping from observations to hidden variables, based on a loss function derived from a vari-
ational principle. By utilizing the recognition model and variance-reduction techniques from [13],
we achieve fast inference both at training and testing time.

2 Model Formulation

2.1 Sigmoid Belief Networks

Deep dynamic generative models are considered, based on the Sigmoid Belief Network (SBN) [16].
An SBN is a Bayesian network that models a binary visible vector v ∈ {0, 1}M , in terms of binary
hidden variables h ∈ {0, 1}J and weights W ∈ RM×J with

p(vm = 1|h) = σ(w>mh+ cm), p(hj = 1) = σ(bj), (1)

where v = [v1, . . . , vM ]>, h = [h1, . . . , hJ ]
>, W = [w1, . . . ,wM ]>, c = [c1, . . . , cM ]>,

b = [b1, . . . , bJ ]
>, and the logistic function, σ(x) , 1/(1 + e−x). The parameters W, b and c

characterize all data, and the hidden variables, h, are specific to particular visible data, v.

The SBN is closely related to the RBM [18], which is a Markov random field with the same bipar-
tite structure as the SBN. The RBM defines a distribution over a binary vector that is proportional
to the exponential of its energy, defined as −E(v,h) = v>c + v>Wh + h>b. The conditional
distributions, p(v|h) and p(h|v), in the RBM are factorial, which makes inference fast, while pa-
rameter estimation usually relies on an approximation technique known as Contrastive Divergence
(CD) [18].

The energy function of an SBN may be written as−E(v,h) = v>c+v>Wh+h>b−∑m log(1+
exp(w>mh + cm)). SBNs explicitly manifest the generative process to obtain data, in which the
hidden layer provides a directed “explanation” for patterns generated in the visible layer. However,
the “explaining away” effect described in [17] makes inference inefficient, the latter can be alleviated
by exploiting recent advances in variational inference methods [13].
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Figure: Graphical model for Deep Temporal Sigmoid Belief Network. (a,b) Generative and
recognition model of TSBN. (c,d) Generative and recognition model of a two-layer TSBN.

SCALABLE LEARNING & INFERENCE

Variational Lower Bound Objective
L(V,θ,φ) = Eqφ(H|V)[log pθ(V,H)− log qφ(H|V)] (7)

We construct the approximate posterior qφ(H|V) as a recognition model
qφ(H|V) = q(h1|v1) ·

T∏

t=2
q(ht|ht−1,vt,vt−1) (8)

and each conditional distribution is specified as
q(hjt = 1|ht−1,vt,vt−1) = σ(u>1jht−1 + u>2jvt + u>3jvt−1 + dj) (9)

The recognition model is introduced to achieve fast inference.
Parameter Learning: We apply the Neural Variational Inference and Learning
(NVIL) algorithm
∇θL(V) = Eqφ(H|V)[∇θ log pθ(V,H)] (10)
∇φL(V) = Eqφ(H|V)[(log pθ(V,H)− log qφ(H|V))×∇φ log qφ(H|V)] (11)

•Use Monte Carlo methods to approximate expectations.
•Variance reduction: (i) centering the learning signal by subtracting the
baseline; (ii) variance normalization.
•Use RMSprop for optimization.

EXPERIMENTS

Datasets:
•Bouncing balls: Synthetic videos of 3 bouncing balls, binary valued.
•Motion capture: Walking & running sequences collected by CMU & MIT.
•Polyphonic music: A collection of 88-dim binary sequences, that span the
whole range of piano from A0 to C8.
•State of the Union (STU): transcripts of 225 US STU addresses, from
1790 to 2014. Vocab size is 2375.

Qualitative Evaluation
Top: Generated from Piano midi
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Figure: (Left) Dictionaries learned on the videos of bouncing balls. (Middle) Samples generated
from TSBN trained on the polyphonic music. Each column is a sample vector of notes. (Right)
Time evolving from 1790 to 2014 for three selected topics learned from the STU dataset.

Figure: Motion trajectories generated from the TSBN trained on the motion capture dataset.
(Left) Walking. (Middle) Running-running-walking. (Right) Running-walking.

Quantitative Evaluation
Table: Prediction error for the bouncing balls.

Model Dim Order Pred. Err.
DTSBN-s 100-100 2 2.79 ± 0.39
DTSBN-d 100-100 2 2.99 ± 0.42
TSBN 100 4 3.07 ± 0.40
TSBN 100 1 9.48 ± 0.38
RTRBM 3750 1 3.88 ± 0.33
SRTRBM 3750 1 3.31 ± 0.33

Table: Prediction error for the motion capture.
Model Walking Running
DTSBN-s 4.40 ± 0.28 2.56 ± 0.40
DTSBN-d 4.62 ± 0.01 2.84 ± 0.01
TSBN 5.12 ± 0.50 4.85 ± 1.26
HMSBN 10.77 ± 1.15 7.39 ± 0.47
ss-SRTRBM 8.13 ± 0.06 5.88 ± 0.05
g-RTRBM 14.41 ± 0.38 10.91 ± 0.27

Table: Log-likelihood for the music dataset.
Model Piano. Nott. Muse. JSB.
TSBN -7.98 -3.67 -6.81 -7.48
RNN-NADE -7.05 -2.31 -5.60 -5.56
RTRBM -7.36 -2.62 -6.35 -6.35
RNN -8.37 -4.46 -8.13 -8.71

Table: Prediction precision for STU.
Model Dim MP PP
HMSBN 25 0.327±0.002 0.353±0.070
DHMSBN-s 25-25 0.299±0.001 0.378±0.006
GP-DPFA 100 0.223±0.001 0.189±0.003
DRFM 25 0.217±0.003 0.177±0.010

Dynamic Topic Modeling

Table: Top 8 most probable words associated with the STU topics.
Topic #29 Topic #30 Topic #130 Topic #64 Topic #70 Topic #74
family officer government generations Iraqi Philippines
budget civilized country generation Qaida islands

Nicaragua warfare public recognize Iraq axis
free enemy law brave Iraqis Nazis
future whilst present crime AI Japanese
freedom gained citizens race Saddam Germans
excellence lake united balanced ballistic mines
drugs safety house streets terrorists sailors
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