

Multi-Fact Correction in Abstractive Text Summarization

Yue Dong¹ Shuohang Wang² Zhe Gan² Yu Cheng² Jackie Chi Kit Cheung¹ Jingjing Liu²

¹Mila / McGill University <u>{yue.dong2@mail, jcheung@cs}.mcgill.ca</u> ²Microsoft Dynamics 365 AI Research <u>{shuowa, zhe.gan, yu.cheng, jingjl}@microsoft.com</u>

Factual Inconsistency in Abstractive Summaries

- On average, 8 30% of abstractive summaries by different systems are factually inconsistent w.r.t the source document (Kryscinski et. al., 2019)
- Need models to improve the factual consistency

CNNDM Source	Bottom-up Summary
(CNN) About a quarter of a million Australian homes and businesses have no power after a ``once in a decade" storm battered Sydney and nearby areas. About 4,500 people have been isolated by flood waters as ``the roads are cut off and we won't be able to reach them for a few days,"	a quarter of a million australian homes and businesses have no power after a decade.

What is SpanFact?

- A suite of two neural-based factual correctors
 - Post-editing models follows the principle that a summary should be
 - Informative (e.g. high ROUGE w.r.t. reference summary)
 - Correct (high factual scores w.r.t. the source document)

What is SpanFact?

- A suite of two QA-inspired factual correctors
 - Focus on entity-type error correction, a major source of hallucinated errors in abstractive summaries (Kryscinski et. al. 2019; Maynez et al., 2020)
 - Performing span selection to replace wrong entities

Corrected by SpanFact

about a quarter of a million australian homes and businesses have no power after a ``once in a decade" storm.

Why SpanFact as a Post-editing Model?

- Designing a fact-aware summarization model is expensive
- Hard and slow to incorporate latest advances in NLP (e.g. pre-trained models)
- Hard to achieve SOTA performance
 - Small boosts on factual scores (Kryscinski et. al. 2019; Wang et al., 2020)
 - Huge ROUGE drop of 12-35% (Cao et al. 2018; Zhu et al., 2020)

We propose:

Light-weight post-editing correctors that work on any abstractive systems

SpanFact: Inspired by QA for Reasoning

 QA systems have been already successfully used for factual consistency evaluation (<u>Wang et</u> <u>al., 2020; Durmus et al.,2020</u>)

 Pre-trained QA models achieve high performance on extractive QA (90%+ on SQuAD)

QAGS Wang et al., 2020

QA-Span Iterative Model

Auto-regressive Model

Training Data Creation

Learn to predict multi-token span for factual consistency correction

Source: the partnership started as a single shop on oxford street in london,	Iterative masking and span selection:
opened in 1864 by john lewis. today the partnership is an organization with	Query: john lewis partnership began as a shop on
bases throughout the uk, with supermarkets and department stores, employing	[MASK]'s oxford street in 1864. all 67,100 employees are
approximately 67,100 people. all 67,100 permanent staff are partners who own	partners in the organization and own shares.
26 john lewis department stores, 183 waitrose supermarkets, an online and	Answer Start: 65
catalogue business, john lewis direct a direct services company - greenbee,	Answer End: 71
three production units and a farm. every partner receives the same scale of	Answer Text: london
bonus, based on a fixed percentage of their annual wage. the bonus for 2006	
was 18\% equivalent to 9 weeks pay, which was rolled out for every employee.	Sequential masking and span selections:
chairman sir stuart hampson retired at the end of march 2007, his successor is	Query: [MASK] began as a shop on [MASK]'s [MASK]
charlie mayfield. hampson's salary for january 26, 2006 to january 26, 2007 was	street in [MASK]. all [MASK] employees are partners in
\\$1.66 million which included the partnership bonus of \\$250,000. john lewis'	the organization and own shares.
consolidated revenue for the last financial year was \\$11.4 billion.	Answer Start: [-1.65.48.83.239]
	Answer End: [-1 71 54 87 245]
Target summary: john lewis partnership began as a shop on london's oxford	Answer Text: ['iohn lewis partnership' 'london' 'oxford'
street in 1864. all 67,100 employees are partners in the organization and own	'1864' '67 100']

Datasets and Abstractive Summarization Models

Summaries generated by abstractive summarization models are used as queries for error correction

- CNN/DailyMail (<u>Hermann et al., 2015</u>)
 - BertSumAbs, BertSumExtAbs, TransformerAbs (Liu and Lapata, 2019)
 - Bottom-up (Gehrmann et al., 2018)
- XSum (Narayan et al., 2018)
 - BertSumAbs, BertSumExtAbs and TransformerAbs (Liu and Lapata, 2019)
- Gigaword (Graff et al., 2003; Rush et al., 2015)
 - pointer-generator (<u>See et al., 2017</u>)
 - base and full GenParse models (Song et al., 2020)

Factual Correction Baseline

Two-encoder **Pointer Generator** (Split Encoder) (Shah et al., 2020)

- Masking all the entities in the system summary
- Uses dual encoders to copy and generate from both the source and the masked query for fact update
- Regenerate the mask query based on the source (generate one token at a time)

Our model's advantage:

- Local edits only on the masks
- Multi-token span selections

Evaluation Metrics

- Informativeness
 - ROUGE -1,-2,-L
- Factual Consistency
 - FactCC (Kryscinski et. al. 2019)
 - Classifier trained on weakly-supervised data
 - Decide whether a claim sentence is factually consistent with the source
 - QAGS (Wang et al., 2020)
 - F1 scores based on matched answers from the source and the generated summary
 - Answers generated from a summary should be similar to those generated from the source
 - We use our reimplementation QAQG, as the code and model were not available

Results on CNNDM

- Our models QA-Span and Autoregressive
 - Boost factual consistency measures (QGQA and FactCC) by large margins
 - with only small drops on ROUGE (important content selection)
- QA-Span (iterative model) is better than Auto-regressive model
- Similar trends on Gigaword

Datasets	QGQA	FactCC	ROUGE		
		sent	1	2	L
Bottom-up	70.58	73.66	41.24	18.70	38.15
Split Encoders	70.22	73.15	39.78	17.87	37.01
QA-Span	74.15	76.60	41.13	18.58	38.04
Auto-regressive	72.78	74.42	41.04	18.48	37.95
BertSumAbs	72.68	76.76	41.67	19.46	38.79
Split Encoders	72.13	76.43	40.21	18.38	37.87
QA-Span	74.93	78.69	41.53	19.28	38.65
Auto-regressive	74.34	77.58	41.45	19.18	38.57
BertSumExtAbs	74.15	79.22	41.87	19.41	38.94
Split Encoders	73.67	79.12	40.55	18.41	38.45
QA-Span	75.94	80.97	41.75	19.27	38.81
Auto-regressive	75.19	79.89	41.68	19.16	38.74
TransformerAbs	73.79	80.51	39.96	17.63	36.90
Split Encoders	73.11	79.54	38.83	16.51	35.71
QA-Span	75.70	82.82	39.87	17.50	36.80
Auto-regressive	75.21	81.64	39.81	17.40	36.75

Results on XSum

- Our models boost factual consistency measures by large margins with a slight drop in ROUGE
- XSum is for extreme summarization, many entities in the reference are not in the source
- Auto-regressive model performs better

Detecate	QGQA	FactCC	ROUGE		
Datasets		sent	1	2	L
BertSumAbs	12.78	23.60	37.78	15.84	30.50
Split Encoders	24.65	24.19	34.22	13.76	27.86
QA-Span	23.85	23.90	36.44	14.56	29.38
Auto-regressive	24.14	25.08	36.24	14.37	29.22
BertSumExtAbs	13.62	23.12	38.25	16.16	30.87
Split Encoders	25.17	24.67	35.66	13.98	27.93
QA-Span	24.52	23.96	36.86	14.82	29.70
Auto-regressive	24.96	25.10	36.67	14.64	29.53
TransformerAbs	7.00	24.15	29.86	10.05	23.78
Split Encoders	11.77	24.78	28.14	8.65	22.70
QA-Span	12.88	24.44	29.51	9.67	23.45
Auto-regressive	13.89	25.75	29.45	9.59	23.40

Human Evaluation

Pairwise comparison of CNNDM summaries enhanced by different correction strategies

- Three annotators for each pair
- summaries from our two models are chosen more frequently as the factually correct one compared to the original.
- The preferences are comparable between iterative and auto-regressive correction models

BertAbs	Better	Worse	Same
QA-Span vs. original	28.6%	18.7%	52.7%
Auto-regressive vs. original	31.3%	16.7%	52%
QA-Span vs. Auto-regressive	26%	27.3%	46.7%
TransformerAbs	Better	Worse	Same
QA-Span vs. original	38%	11.3%	40.7%
Auto-regressive vs. original	36%	19.3%	44.7%
QA-Span vs. Auto-regressive	32.7%	28%	39.3%
Bottom-up	Better	Worse	Same
QA-Span vs. original	34%	12%	54%
Auto-regressive vs. original	31.4%	13.3%	55.3%
QA-Span vs. Auto-regressive	41.3%	32%	26.7%

Table 6: Human evaluation results on pairwise comparison of factual correctness on 450 (9 \times 50) randomly sampled articles.

In Summary

Gigaword Source	all the 12 victims including 8 killed and 4 injured have been identified as senior high school students of the second senior high school of ruzhou city, central china's henan province, local police said friday.	
Pointer-	12 killed, 4 injured in central china school	
Generator Summary	shooting.	
Corrected	8 killed, 4 injured in central china school	
by SpanFact	shooting.	
XSum Source	st clare's catholic primary school in birm- ingham has met with equality leaders at the city council to discuss a complaint from the pupil's family. the council is supporting the school to ensure its policies are appropriate	
BertAbs Summary	a muslim school has been accused of breach- ing the equality act by refusing to wear head- scarves.	
Corrected by SpanFact	a catholic school has been accused of breach- ing the equality act by refusing to wear head- scarves.	

Post-editing correctors

- Based on QA systems (pre-trained QA model)
- Performing span selection to replace wrong entities

Work on any abstractive systems

- Boosts on factual scores
- Without sacrificing ROUGE

Future Work:

- Errors beyond entities
- Generalization beyond domains that QA models are trained on

Thank You!

Please attend our Q&A session

