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Introduction _ Experiments
Model architecture
Main Contributions: Code: https://github.com/zhegan27/Semantic_ Compositional Nets
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(LSTM) network to an ensemble of tag-dependent weight matrices. Generated caption: a man riding skis down a snow covered slope ope LSTM-RT 0.724 0.555 0.419 0.316 0.252 0.970
» [ he degree to which each member of the ensemble is used to generate a | LSTM-RT, 0.730 0.568 0.430 0.322 0.249 0.977
caption is tied to the image-dependent probability of the corresponding tag. Figure: Overview of the proposed model. SCN-LSTM 0.728 0.566 0.435 0.330 0.257 1.012
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«let y, = [?Jﬂ, . ,ym] - {O, 1} be the label vector Figure: SCN learns an ensemble of 1000 LSTMs, one for each semantic concept.
= y;; = 1 if image 7 is annotated with tag k; v;. = 0 otherwise. Youtube2Text for video captioning
« Let v; represent the image feature vector, the cost function to be minimized is Detected semantic concepts: Model B-4 M C
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Review of RNN for image captioning: 1. Only using “baby”: a baby in a STM-CRT, 0.469 0.326 0.706
= [ he probability of caption X given image feature vector v is 2. Only using “holding™: a person holding a hand SCN-LSTM 0.502 0.334 0.770
T 3. Only using toothbrush™: a pair of toothbrush SCN-LSTM Ens. of 50.511 0.335 0.777
p(X|I) — H1 p(a’jt‘a’j07 e, Ly, fU) (2) 4. Only using “mouth”: a man with a toothbrush
L= _ 5. Using “baby” and “mouth”: a baby brushing its teeth -
« Each conditional p(a:|x s, v) is specified as softmax(Vh;). Importance of usug detected tags
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SCN: extending each weight matrix of the conventional RNN to be an ensemble 6. Replace “baby” with “girl”: a little girl holding a toothbrush in her mouth ) S L l LS. O
of a2 set of tag—dependent WEight matrices 7. Replace “toothbrush” with . a baby holding a baseball bat in his hand 2 A - ' Generated captions:
8. Replace “toothbrush™ with * . a baby holding a piece of pizza in his mouth LSTM-R: a younggirl is playinga video game
h, = g(W(S)ajt_l 4+ U(3>ht_1 4+ [(t — 1) : Cv) (4) LSTM-RT,: a group of peoplessittingata table
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« Given s © 'K, we define tensors W € NpXN XK 50 d U+ € D 1Ly XMy XIS Figure: Examples of SCN-based image captioning.
« W(s) € R"*" and U(s) € R "™ can be specified as | f usi icual f
(S) W ( )K T P i o SCN: we obtain SCN with an RNN as mportnce of using visual reatures
. (S) .—. kzl o . .T[ ]7 (S> - /;::1 o T[ ] . (5) Ti—1 = Wps O Wy ’ ﬁt_l = Ups © Uchy ’ (8) azt:cc):e(g ;aSgZS) dog (0.828), sitting (0.647)
« Can be interpreted as jointly training an ensemble of /X' RNNs in total. z=1I(t=1)-Cv, hi=0(W,a 1+ Uh; 1 +2). (9) stuffed (0.602). white (0.544). next (0.527),

« Though appealing, the number of parameters is proportional to K, which is
prohibitive for large K (e.g., K = 1000 for COCO).
« In order to remedy this problem, we factorize W (s) and U(s) as
W(s) = W, - diag(W;s) - W, (6) « The RNN weight matrices that correspond to each tag share “structure’.
U(s) = U, - diag(Uys) - U, (7) « We introduce LSTM units and generalize SCN-RNN to SCN-LSTM.

laying (0.509), cat (0.402)

Generated captions:

SCN-LSTM-T: a dog layingon top of a stuffed animal
SCN-LSTM: a teddy bearlayingon top of a stuffed

- animal

Let wy;. represent the kth column of Wy, then
W(s) = 5 si[W, - diag(wy) - W] (10)
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