

Motivation

- Most previous work on VQA focused on multimodal fusion to learn a joint representation of a sparse set of image regions and the question
- Interactions between different objects in the image (e.g., actions and relative geometrical positions) are not considered
- Visual object relations can aid the VQA task by interpreting the dynamics and interactions between different objects in an image
- Different types of relations can be formed between objects in each image, the importance of which should differ given different questions

Q: Where is the clock? A: On the top of the tower. (a) Spatial Relation

Q: What is the man in blue hat holding? A: Bat.

(b) Semantic Relation

Quantitative Results

 Achieved state-of-the-art performance on both Consistent performance gain when combining ReGAT VQA 2.0 and VQA-CP v2, generalizable to different with different fusion methods VQA tasks

Model		Test-			
	Overall	Y/N	Num	Other	std
BUTD	65.32	81.82	44.21	56.05	65.67
MuRel	68.03	84.77	49.86	57.85	68.41
MFH	68.76	84.27	50.66	60.50	-
Pythia	70.01	-	-	-	70.24
BAN	70.04	85.42	54.04	60.52	70.35
ReGAT+BAN	70.27	86.08	54.42	60.33	70.58

 Table 1. Results on VQA Benchmark

SOTA	Baseline	Semantic	Spatial	Implicit	All
39.54	39.24	39.54	40.30	39.58	40.42

Table 2. Results on VQA-CP Benchmark

ICCV 2019 Relation-aware Graph Attention Network for Visual Question Answering Seoul, Korea Linjie Li, Zhe Gan, Yu Cheng, Jingjing Liu

Microsoft Dynamics 365 AI Research

- Each image is encoded as a graph (objects as nodes and relations as edges) Relation-aware representations are learned via Question-adaptive Graph Attention: absorb semantic information from questions to capture relations that are most question-relevant

Experimental Results

Model	Baseline	Semantic	Spatial	Implicit	All
BUTD	63.38	64.11	64.02	64.10	65.30
MUTAN	61.36	62.60	62.01	62.45	64.37
BAN	65.51	65.97	66.02	65.93	67.18

 Table 3. Ablation Study on Different Relation Types
 Across Different Fusion Methods (VQA val)

Both graph attention (Att.) and question-adaptive (Q-ada.) mechanisms contribute to performance improvement

Att.	Q-ada.	Semantic	Spatial	Implicit
No	No	63.20	63.04	n/a
Yes	No	63.90	63.85	63.36
No	Yes	63.31	63.13	n/a
Yes	Yes	64.11	64.02	64.10

Table 4. Ablation Study on Question-adaptive Graph Attention (VQA val)

Relation-Aware Graph Attention Network (ReGAT)

alignment between regions and questions

based classifier and a pretrained classifier on Visual Genome, respectively Implicit relations are learned dynamically during the training process The relation-aware image representations are then fused with question representation through multimodal fusion to predict an answer