EMNLP-IJCNLP 2019

Patient Knowledge Distillation for BERT Model Compression

Sigi Sun, Yu Cheng, Zhe Gan and Jingjing Liu Microsoft Dynamics 365 Al Research

Motivation

- Pre-trained language model, such as BERT, has proven to be lacksquarehighly effective for downstream NLP tasks
- However, the high demand for computing resources during model training hinders their application in practice
- Knowledge Distillation (KD) is proven to be useful for model compression in previous work
- We propose Patient Knowledge Distillation, which learns knowledge from previous layers of the teacher network, and is

Patient Knowledge Distillation

more generalizable and effective than vanilla KD

Notations

- **BERT-Teacher:** BERT with 12 or 24 layers fine-tuned on downstream tasks
- **BERT-Student**: Transformer with 3 or 6 layers to be learned from the Teacher and downstream tasks
- **CE-Loss:** Cross-entropy loss
- **DS-Loss:** Distillation loss between teacher's and student's soft labels
- Embedding of [CLS]: $\mathbf{h}_i = [\mathbf{h}_{i,1}, \mathbf{h}_{i,2}, \dots, \mathbf{h}_{i,k}] = \text{BERT}_k(\mathbf{x}_i) \in \mathbb{R}^{k \times d}$

• **PT Loss on [CLS]:**
$$L_{PT} = \sum_{i=1}^{N} \sum_{j=1}^{M} \left| \left| \frac{\mathbf{h}_{i,j}^{s}}{||\mathbf{h}_{i,j}^{s}||_{2}} - \frac{\mathbf{h}_{i,I_{pt}(j)}^{t}}{||\mathbf{h}_{i,I_{pt}(j)}^{t}||_{2}} \right| \right|_{2}^{2}$$

- **PKD-Skip**: the Student learns the Teacher's outputs in *every T* layers
- PKD-Last: the Student learns the Teacher's outputs from the *last* T layers
- Final Loss: linear combination of task-specific CE loss, normal DS loss and proposed PT loss

Learning Curves on the Training and Dev sets of QNLI and MNLI

ONLI Train Dataset	ONLL Day, Datacat	MNLI Train Dataset	MNI I Day Datacat
QNLI Irain Dataset	QNLI Dev Dataset	MNLI Train Dataset	MINLI DEV DALASEL
			1.0

Learning curves on QNLI and MNLI, two large-scale NLI datasets, where the Student network learned with vanilla KD quickly saturates on the dev set, while the proposed Patient-KD starts to plateau only in a later stage

EVNORIMONTAL	ITC
Experimental	

Model	SST-2	MRPC	QQP	MNLI-m	MNLI-mm	QNLI	RTE
		(3.7k)	(364k)	(393k)	(393k)	(105k)	(2.5k)
BERT ₁₂ (Google)	93.5	88.9/84.8	71.2/89.2	84.6	83.4	90.5	66.4
RT12 (teacher)	94.3	89.2/85.2	70.9/89.0	83.7	82.8	90.4	69.1
6—FT	90.7	85.9/80.2	69.2/88.2	80.4	79.7	86.7	63.6
ERT ₆ –KD	91.5	86.2/80.6	70.1/88.8	80.2	79.8	88.3	64.7
ERT ₆ –PKD	92.0	85.0/79.9	70.7/88.9	81.5	81.0	89.0	65.5
BERT ₃ _FT	86.4	80.5/ 72.6	65.8/86.9	74.8	74.3	84.3	55.2
BERT3-KD	86.9	79.5/71.1	67.3/87.6	75.4	74.8	84.0	56.2
BERT3-PKD	87.5	80.7 /72.5	68.1/87.8	76.7	76.3	84.7	58.2

Setting	Teacher	Student	SST-2	MRPC	QQP	MNLI-m	MNLI-mm	QNLI	RTE
N/A	N/A	BERT ₁₂	94.3	89.2/85.2	70.9/89.0	83.7	82.8	90.4	69.1
N/A	N/A	BERT ₂₄	94.3	88.2/84.3	71.9/89.4	85.7	84.8	92.2	72.8
#1	BERT ₁₂	BERT ₆ [Base]-KD	91.5	86.2/80.6	70.1/88.8	79.7	79.1	88.3	64.7
#2	BERT ₂₄	BERT ₆ [Base]-KD	91.2	86.1/80.7	69.4/88.6	80.2	79.7	87.5	65.7
#3	BERT ₂₄	BERT ₆ [Large]-KD	89.6	79.0/70.0	65.0/86.7	75.3	74.6	83.4	53.7
#4	BERT ₂₄	BERT ₆ [Large]-PKD	89.8	77.8/68.3	67.1/87.9	77.2	76.7	83.8	53.2

- KD *improves* direct fine-tuning (FT)
- PKD-Skip almost always *outperforms* vanilla KD
- 6-layer Student trained via PKD performs *comparable* to Teacher on larger datasets
 - SST-2 (-2.3%), QQP (-0.1%), MNLI-m (-2.2%), MNLI-mm (-1.8%), and QNLI(-1.4%))

Model	SST-2	MRPC	QQP	MNLI-m	MNLI-mm	QNLI	RTE
BERT ₆ -PKD-Last	91.9	85.1/79.5	70.5/88.9	80.9	81.0	88.2	65.0
BERT ₆ -PKD-Skip	92.0	85.0/79.9	70.7/88.9	81.5	81.0	89.0	65.5

PKD-Skip *performs better* than PKD-Last

when changing teacher from BERT-Large to BERT-Base

#2 vs. #3: BERT_6 [Large] Student has 1.6 times more parameters than BERT_6[Base], but it *performs much worse*

#3 vs. **#4**: PKD-Skip *outperforms* KD, which indicates PKD is a generic approach independent of the selection of the Teacher model

Initialization Mismatch

- Ideally, we should use pre-trained 6-layer BERT as initialization
- We are using *first 6 layers* of BERT-Base and BERT-Large because of computation limitation
- The first six layers of BERT-Large may not be able to capture high-level features, leading to worse KD performance