ICML 2018

JointGAN: Multi-Domain Joint Distribution Learning with Generative Adversarial Nets

Presenter: Shuyang Dai

Yunchen Pu, Shuyang Dai, Zhe Gan, Weiyao Wang, Guoyin Wang, Yizhe Zhang, Ricardo Henao, Lawrence Carin

Facebook & Duke University & Microsoft Research

Joint Distribution Learning

- Learning *marginals* with GAN:
 - $$\begin{split} \tilde{\boldsymbol{x}} &= f_{\boldsymbol{\alpha}}(\boldsymbol{\epsilon}_1), \qquad \boldsymbol{\epsilon}_1 \sim p(\boldsymbol{\epsilon}_1) \\ \tilde{\boldsymbol{y}} &= f_{\boldsymbol{\beta}}(\boldsymbol{\epsilon}_1'), \qquad \boldsymbol{\epsilon}_1' \sim p(\boldsymbol{\epsilon}_1') \end{split}$$

• Learning *conditionals* with ALI, Cycle GAN, and Triangle GAN:

$$\begin{split} \tilde{\boldsymbol{y}} &= f_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{\epsilon}_2), \quad \boldsymbol{x} \sim q(\boldsymbol{x}), \quad \boldsymbol{\epsilon}_2 \sim p(\boldsymbol{\epsilon}_2) \\ \tilde{\boldsymbol{x}} &= f_{\boldsymbol{\phi}}(\boldsymbol{y}, \boldsymbol{\epsilon}_2'), \quad \boldsymbol{y} \sim q(\boldsymbol{y}), \quad \boldsymbol{\epsilon}_2' \sim p(\boldsymbol{\epsilon}_2') \end{split}$$

Though joint distributions are matched, only conditional distributions are learned.

Is there a way to *fully learn* the joint distribution ?

Joint Distribution Learning

- Potential advantages:
 - Synthesis of draws from any of the marginals
 - Synthesis of draws from the conditionals when other random variables are observed, *i.e.*, imputation
 - Also allows complete draws from the full joint distribution

Joint Distribution Learning

• Learning joint distribution with the proposed JointGAN:

• To reduce the number of parameters, let $f_{\alpha}(\cdot) = f_{\phi}(\mathbf{0}, \cdot)$ and $f_{\beta}(\cdot) = f_{\theta}(\mathbf{0}, \cdot)$, where **0** is an all-zero tensor.

Training JointGAN

Training JointGAN

• A single 5-way critic (discriminator):

$$p_{1}(\boldsymbol{x}, \boldsymbol{y}) = q(\boldsymbol{x})p_{\boldsymbol{\theta}}(\boldsymbol{y}|\boldsymbol{x}), \quad p_{2}(\boldsymbol{x}, \boldsymbol{y}) = q(\boldsymbol{y})p_{\boldsymbol{\phi}}(\boldsymbol{x}|\boldsymbol{y})$$

$$p_{3}(\boldsymbol{x}, \boldsymbol{y}) = p_{\boldsymbol{\alpha}}(\boldsymbol{x})p_{\boldsymbol{\theta}}(\boldsymbol{y}|\boldsymbol{x}), \quad p_{4}(\boldsymbol{x}, \boldsymbol{y}) = p_{\boldsymbol{\beta}}(\boldsymbol{y})p_{\boldsymbol{\phi}}(\boldsymbol{x}|\boldsymbol{y})$$

$$p_{5}(\boldsymbol{x}, \boldsymbol{y}) = q(\boldsymbol{x}, \boldsymbol{y})$$
(3)

• The minimax objective for JointGAN:

$$\min_{\boldsymbol{\theta}, \boldsymbol{\phi}} \max_{\boldsymbol{\omega}} \mathcal{L}_{\text{JointGAN}}(\boldsymbol{\theta}, \boldsymbol{\phi}, \boldsymbol{\omega}) = \sum_{k=1}^{5} \mathbb{E}_{p_k(\boldsymbol{x}, \boldsymbol{y})}[\log g_{\boldsymbol{\omega}}(\boldsymbol{x}, \boldsymbol{y})[k]]$$
(4)

where the critic $g_{\omega}(\mathbf{x}, \mathbf{y}) \in \Delta^4$ has softmax on the top layer:

$$\sum_{k=1}^{5} g_{\boldsymbol{\omega}}(\boldsymbol{x}, \boldsymbol{y})[k] = 1 \text{ and } g_{\boldsymbol{\omega}}(\boldsymbol{x}, \boldsymbol{y})[k] \in (0, 1)$$
(5)

JointGAN: Computational Cost

- The capacity of our model is increased without introducing additional computational cost
- The parameters of the generators are tied together:

•
$$f_{\alpha}(\cdot) = f_{\phi}(\mathbf{0}, \cdot)$$
 and $f_{\beta}(\cdot) = f_{\theta}(\mathbf{0}, \cdot)$

• Almost no additional parameters when compared with ALI

- A single 5-way critic (discriminator):
 - Also, almost no additional parameters when compared with ALI

Experiment: generated image pairs

Figure 1. Generated paired samples from models trained on paired data.

Experiment: generated image-caption pairs

Figure 2. Generated paired samples of caption features and images. Left block: from generated images to caption features. Right block: from generated caption features to images.

Handle Discrete Text Data

Extension I: No Paired Data

• When paired draws from $p_5(x, y) = q(x, y)$ are not available, cycle consistency is imposed:

$$\min_{\boldsymbol{\theta}, \boldsymbol{\phi}} \max_{\boldsymbol{\omega}} \mathcal{L}_{\text{JointGAN}}(\boldsymbol{\theta}, \boldsymbol{\phi}, \boldsymbol{\omega}) = \sum_{k=1}^{4} \mathbb{E}_{p_k(\boldsymbol{x}, \boldsymbol{y})}[\log g'_{\boldsymbol{\omega}}(\boldsymbol{x}, \boldsymbol{y})[k]] + R_{\boldsymbol{\theta}, \boldsymbol{\phi}}(\boldsymbol{x}, \boldsymbol{y})$$
(6)

where $R_{\theta,\phi}(x, y)$ is a regularization term:

$$\begin{aligned} R_{\theta,\phi}(\boldsymbol{x},\boldsymbol{y}) &= \mathbb{E}_{\boldsymbol{x} \sim q(\boldsymbol{x}), \boldsymbol{y} \sim p_{\theta}(\boldsymbol{y}|\boldsymbol{x}), \hat{\boldsymbol{x}} \sim p_{\phi}(\boldsymbol{x}|\boldsymbol{y})} ||\boldsymbol{x} - \hat{\boldsymbol{x}}|| \\ &+ \mathbb{E}_{\boldsymbol{y} \sim q(\boldsymbol{y}), \boldsymbol{x} \sim p_{\phi}(\boldsymbol{x}|\boldsymbol{y}), \hat{\boldsymbol{y}} \sim p_{\theta}(\boldsymbol{y}|\boldsymbol{x})} ||\boldsymbol{y} - \hat{\boldsymbol{y}}|| \end{aligned}$$

(7)

Extension I: No Paired Data

Figure 3. Generated paired samples from models trained on unpaired data.

Extension II: Multiple Domains

• Consider two specific forms for joint random variables (x, y, z):

$$p(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = p_{\boldsymbol{\alpha}}(\boldsymbol{x}) p_{\boldsymbol{\nu}}(\boldsymbol{y} | \boldsymbol{x}) p_{\boldsymbol{\gamma}}(\boldsymbol{z} | \boldsymbol{x}, \boldsymbol{y}) = p_{\boldsymbol{\beta}}(\boldsymbol{z}) p_{\boldsymbol{\psi}}(\boldsymbol{y} | \boldsymbol{z}) p_{\boldsymbol{\eta}}(\boldsymbol{x} | \boldsymbol{y}, \boldsymbol{z})$$
(8)

(9)

• Assume only empirical draws from q(x, y) and q(y, z) are available. Let the critic be a 6-way softmax classifier:

$$p_{\alpha}(\boldsymbol{x})p_{\nu}(\boldsymbol{y}|\boldsymbol{x})p_{\gamma}(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{y}), \qquad p_{\beta}(\boldsymbol{z})p_{\psi}(\boldsymbol{z}|\boldsymbol{y})p_{\eta}(\boldsymbol{x}|\boldsymbol{y},\boldsymbol{z})$$

$$q(\boldsymbol{x})p_{\nu}(\boldsymbol{y}|\boldsymbol{x})p_{\gamma}(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{y}), \qquad q(\boldsymbol{x})p_{\psi}(\boldsymbol{z}|\boldsymbol{y})p_{\eta}(\boldsymbol{x}|\boldsymbol{y},\boldsymbol{z})$$

$$q(\boldsymbol{x},\boldsymbol{y})p_{\gamma}(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{y}), \qquad q(\boldsymbol{y},\boldsymbol{z})p_{\eta}(\boldsymbol{x}|\boldsymbol{y},\boldsymbol{z}).$$

Extension II: Multiple Domains

Figure 4. Generated paired samples from models trained on facades↔labels↔cityscapes. Left: sequentially generated from left to right. Right: generated from right to left.

Quantitative results

- Compare with a two-step baseline:
 - WGAN-GP is employed to model the two marginals
 - Pix2pix and CycleGAN are utilized to model the conditionals for the case w/wo paired empirical draws

Method	Realism	Relevance	
Trained with paired data			
WGAN-GP + Pix2pix wins JointGAN wins Not distinguishable	2.32% 17.93% 79.75%	3.1% 36.32% 60.58%	
Trained with unpaired data			
WGAN-GP + CycleGAN wins JointGAN wins Not distinguishable	0.13% 81.55% 18.32%	1.31% 40.87% 57.82%	

Table 1. Human evaluation results on the quality of generated pairs.

Quantitative results

- We further define *Relevance Score*
 - Used to evaluate the quality and relevance of two generated images
 - Calculated as the cosine similarity between two images that are embedded into a shared latent space, which are learned via training a ranking model

Table 2. Relevance scores of the generated pairs on the rive two-domain image datasets.								
	edges↔shoes	$edges \leftrightarrow handbags$	labels⇔cityscapes	labels↔facades	$maps \leftrightarrow satellites$			
True pairs	0.684	0.672	0.591	0.529	0.514			
Random pairs	0.008	0.005	0.012	0.011	0.054			
Other pairs	0.113	0.139	0.092	0.076	0.081			
WGAN-GP + Pix2pix	0.352	0.343	0.301	0.288	0.125			
JointGAN (paired)	0.488	0.489	0.377	0.364	0.328			
WGAN-GP + CycleGAN	0.203	0.195	0.201	0.139	0.091			
JointGAN (unpaired)	0.452	0.461	0.339	0.341	0.299			

Table 2	Relevance	scores of the	generated	nairs on	the five	two-domai	n image	datasets
	Kelevance	scores or the	generateu	pairs on	the nye	iwo-uomai	n nnage	ualascis.

Summary

- We propose JointGAN for multi-domain joint distribution learning
- JointGAN provides freedom to draw samples from various marginalized or conditional distributions
- Besides image pairs, we also provided generated image-caption pairs

Come to our poster for details @ Hall B #109

Yunchen Pu, Shuyang Dai, Zhe Gan, Weiyao Wang, Guoyin Wang, Yizhe Zhang, Ricardo Henao, Lawrence Carin

Facebook & Duke University & Microsoft Research

