
InfoBERT: Improving Robustness of Language 

Models from An Information Theoretic Perspective
Boxin Wang*, Shuohang Wang†, Yu Cheng†, Zhe Gan†, Ruoxi Jia‡, Bo Li*, Jingjing Liu†

* University of Illinois at Urbana-Champaign, † Microsoft Research, ‡ Virginia Tech

Conclusions

In this paper, we propose a novel learning framework InfoBERT from an 
information theoretic perspective to perform robust fine-tuning over pre-
trained language models.

InfoBERT consists of two novel regularizers to improve the robustness 
of the learned representations: 
(a) Information Bottleneck Regularizer, learning to extract the 
approximated minimal sufficient statistics and denoise the excessive 
spurious features;
(b) Local Anchored Feature Regularizer,  which improves the robustness 
of global features by aligning them with local anchored features.

Definition of Textual Adversarial Examples

We mainly focus on the dominant word-level attack as the main threat 
model, since it
• achieves higher attack success 
• is generally less noticeable to human readers than other attacks

Most word-level adversarial attacks constrain word perturbations via the 
bounded magnitude in the semantic embedding space.

By adapting from Jacobsen et al. (2019), we define the adversarial text 
examples with distortions constrained in the embedding space.

(𝝐-bounded Textual Adversarial Examples)
Given a sentence 𝑥 = 𝑥1; 𝑥2; … ; 𝑥𝑛 , where 𝑥𝑖 is the word at 𝑖-th position, the 
𝜖-bounded adversarial sentence 𝑥′ = [𝑥1

′ ; 𝑥2
′ ; … ; 𝑥𝑛

′ ] for a classifier ℱ satisfies:
(1) ℱ 𝑥 = 𝑜 𝑥 = 𝑜(𝑥′) but ℱ 𝑥′ ≠ 𝑜 𝑥′ , where 𝑜 ∙ is the oracle (e.g., 

human decision-maker); 
(2) ||𝑡𝑖 − 𝑡𝑖

′ ||2 ≤ 𝜖 for 𝑖 = 1, 2, 3, … , 𝑛, where 𝜖 ≥ 0 and 𝑡𝑖 is the word 
embedding of 𝑥𝑖 .

Introduction

Adversarial Vulnerability of Language Models
Deep neural networks are known to be prone to adversarial examples, i.e., 
the outputs of neural networks can be arbitrarily wrong when human-
imperceptible adversarial perturbations are added to the inputs. 

Textual adversarial attacks typically perform word-level substitution or 
sentence-level paraphrasing  to achieve semantic/utility preservation that 
seems innocuous to human, while fools NLP models.  Recent studies further 
show that even large-scale pre-trained language models (LM) such as BERT 
are vulnerable to adversarial attacks.

Representation Learning
Many studies have shown that self-supervised representation learning is 
essentially solving the problem of maximizing the mutual information (MI) 
I(X; T) between the input X and the representation T. 

• Maximizing information is only useful in so far as that information is 
task-relevant

• Excessive noisy information and spurious features may incur adversarial 
attacks.

Goals
• Analyze the robustness of language models from an information theoretic 

perspective in a principled way
• Improve the robustness of language representations by fine-tuning both 

local features and global features

InfoBERT

Principle for Robust Representation Learning 
• Maximize the mutual information between representation 𝑇 and label 𝑌
• Minimize the mutual information between input 𝑋 and representation 𝑇
• Maximize the mutual information between local “robust” feature 𝑇𝑘𝑗 and global feature 𝑍

Information Bottleneck as a Regularizer

• General Information Bottleneck Objective 
as the maximization of the Lagrangian

• Localized Formulation of IB Objective 

Theorem 3.1 (Lower bound of           ) Given a sequence of random variables 𝑋 =
[𝑋1; 𝑋2; . . . ; 𝑋𝑛] and a deterministic feature extractor 𝑓𝜃, let 𝑇 = [𝑇_1; . . . ; 𝑇_𝑛] =
[𝑓𝜃(𝑋1); 𝑓𝜃(𝑋2); . . . ; 𝑓𝜃 𝑋𝑛 ]. Then the localized formulation of IB          is a lower bound of        

Theorem 3.2 (Adversarial Robustness Bound) For random variables 𝑋 = [𝑋1; 𝑋2; . . . ;
𝑋𝑛] and 𝑋′ = 𝑋1

′ ; 𝑋2
′ ; . . . ; 𝑋𝑛

′ , Let 𝑇 = [𝑇_1; . . . ; 𝑇_𝑛] = [𝑓𝜃(𝑋1); 𝑓𝜃(𝑋2); . . . ; 𝑓𝜃 𝑋𝑛 ] and 
𝑇′ = [𝑇1

′; . . . ; 𝑇𝑛
′] = [𝑓𝜃(𝑋1

′); 𝑓𝜃(𝑋2
′); . . . ; 𝑓𝜃 𝑋𝑛

′ ] with finite support     , where 𝑓𝜃 is a 
deterministic feature extractor. The performance gap between benign and adversarial data 
|𝐼 𝑌; 𝑇 − 𝐼(𝑌; 𝑇′)| is bounded above by

where  𝐵0, 𝐵1, 𝐵2, 𝐵3and 𝐵4 are constants depending on the sequence length 𝑛, 𝜖 and 𝑝 𝑥 .
Remark:
1. Adversarial performance gap |𝐼 𝑌; 𝑇 − 𝐼(𝑌; 𝑇′)| becomes closer, when 𝐼(𝑋𝑖; 𝑇𝑖) decreases.
2. Combining adversarial training with IB regularizer can further minimize 𝐼 𝑋𝑖

′; 𝑇𝑖
′ .

Complete Objective:

Local Anchored Feature Regularizer

Step 1: Locate the local anchored features by filtering out non-robust and unuseful features.

Step 2: Improve the robustness of the global feature 𝑍 by aligning it with the local anchored 
features 𝑇𝑘𝑗
• In practice, we can use the final-layer [CLS] embedding of BERT to represent  global  

sentence-level  feature 𝑍
• Use information theoretic tool to increase the mutual information 𝐼(𝑇𝑘𝑗; 𝑍) between local 

anchored feature 𝑇𝑘𝑗 and global feature 𝑍, so that 𝑍 can share more robust information

Experiments

Evaluation on ANLI 

Evaluation against TextFooler

Evaluation on adversarial SQuAD

Ablation Studies

Adversarial examples for QA model

p
e
rf

o
rm

a
n
c
e

Not

enough

signal

Too

much

noise

#bits

Missing

info

Over

Rep.Optimal Rep.

Adversarial examples for classification model

Task Objective

Local anchored features contribute more to MI 

improvement than nonrobust/unuseful features, 

unveiling closer relation with robustness.

Adversarial robustness improves by decreasing 

the mutual information between input and 

representation without affecting the benign 

accuracy much, until aggressive compression that 

leads to both performance drop.


