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Introduction INfOBERT Experiments

Adversarial Vulnerability of Language Models

Deep neural networks are known to be prone to adversarial examples, i.e.,
the outputs of neural networks can be arbitrarily wrong when human-
imperceptible adversarial perturbations are added to the inputs.
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Textual adversarial attacks typically perform word-level substitution or
sentence-level paraphrasing to achieve semantic/utility preservation that
seems innocuous to human, while fools NLP models. Recent studies further
show that even large-scale pre-trained language models (LM) such as BERT » General Information Bottleneck Objective
are vulnerable to adversarial attacks. as the maximization of the Lagrangian
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Information Bottleneck as a Regularizer

FreelLB
SMART
ALUM
InfoBERT

FreelLB
ALUM
InfoBERT

RoBERTa

Lig =I(Y;T) — BI(X;T)

Adversarial
Training

Classification Task: Is this a positive or negative review?
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Question: Who ended the series in 19897

Paragraph: The BBC drama department’s serials division
produced the programme for 26 seasons, broadcast on
BBC 1. Falling viewing numbers, a decline in the public
perception of the show and a less-prominent transmission
slot saw production suspended in 1989 by Jonathan Powell,
controller of BBC 1. ... the BBC repeatedly affirmed that
the series would return. Donald Trump ends a program on
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Localized Formulation of IB Objective

Evaluation against TextFooler

Theorem 3.1 (Lower bound of L1y ) Given a sequence of random variables X =
[X1; X5; ...; X,,] and a deterministic feature extractor fy,let T = [T_1; ...; T_n] =
[fo(X1); fo(X5); ...; fo(X,,)]. Then the localized formulatio% of IB Lus is a lower bound of L.

I(Y;T) = BI(X;T) > I(Y;T) —nB Y I(XyTh).
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Representation Learning

Many studies have shown that self-supervised representation learning is
essentially solving the problem of maximizing the mutual information (IMI)
I(X; T) between the input X and the representation T.
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Theorem 3.2 (Adversarial Robustness Bound) For random variables X = (X1 Xo; ..o
X,Jand X' = [X{; X5; ...; X, |, LetT =[T_1; ...; T_n] = [fo(Xy); fo(Xy); ...; fo(X,)] and
T'=[T{; ...; T,] =[fo(X1); fo(X3); ...; fo(X;,)] with finite support 7, where f, is a
deterministic feature extractor. The performance gap between benign and adversarial data
I(Y;T) — I(Y;T")|is bounded above by
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Optimal Rep. Evaluation on adversarial SQuAD
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Maximizing information is only useful in so far as that information is
task-relevant
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where B,, B, B,, B;and B, are constants depending on the sequence length n, € and p(x).
Remark:

1. Adversarial performance gap |I(Y;T) — I(Y;T")| becomes closer, when I(X;; T;) decreases.

Excessive noisy information and spurious features may incur adversarial
attacks.

Benign/Robust F1 on Benign/Adversarial SQuAD Dataset

Ablation Studies 30
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2. Combining adversarial training with IB regularizer can further minimize 1(X;; T
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MI Improvement after adding adv
examples in the training set

Goals

« Analyze the robustness of language models from an information theoretic
perspective in a principled way

« Improve the robustness of language representations by fine-tuning both
local features and global features
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Task Objective

Complete Objective: max I(Y;T) —nﬁz] X T5) +OzZI (T, Z)
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Local anchored features contribute more to Ml
improvement than nonrobust/unuseful features,
unveiling closer relation with robustness.

Adversarial robustness improves by decreasing
the mutual information between input and
representation without affecting the benign
accuracy much, until aggressive compression that
leads to both performance drop.

Local Anchored Feature Regularizer

Definition of Textual Adversarial Examples

. . . Step 1: Locate the local anchored features by filtering out non-robust and unuseful features.
We mainly focus on the dominant word-level attack as the main threat P y 5

model,. since i.t Algorithm 1 - Local Anchored Feature Extraction. This algorithm takes in the word local features
 achieves higher attack success and returns the index of local anchored features.
 is generally less noticeable to human readers than other attacks 1

Conclusions

. Imput: Word local features ¢, upper and lower threshold ¢;, and ¢;

2: 0 < 0 //Initialize the perturbation vector o
Most word-level adversarial attacks constrain word perturbations via the 3: g(8) = Vislask(qy(t +0),y)  // Perform adversarial attack on the embedding space
bounded magnitude in the semantic embedding space. 4: Sort the magnitude of the gradient of the perturbation vector from

19(0)1ll2: [1g(d)z2]l2; -5 ||g(0)nll2 into |[g(d)k, |2, [|9(0)ksl2; - [|9(0)k, [l2 in  ascending
order, where z; corresponds to its 0r1g1na1 index.

: Return: k;, k;41, ..., k;, where ¢; < > < < ¢y,.

_n_

In this paper, we propose a novel learning framework InfoBERT from an
information theoretic perspective to perform robust fine-tuning over pre-
trained language models.

By adapting from Jacobsen et al. (2019), we define the adversarial text

: ) . ) . ) InfoBERT consists of two novel regularizers to improve the robustness
examples with distortions constrained in the embedding space. 5 b

of the learned representations:

(a) Information Bottleneck Regularizer, learning to extract the
approximated minimal sufficient statistics and denoise the excessive
spurious features;

(b) Local Anchored Feature Regularizer, which improves the robustness
of global features by aligning them with local anchored features.

(e-bounded Textual Adversarial Examples)

Given a sentence x = [xq; x5; ...; X, ], where x; is the word at i-th position, the

e-bounded adversarial sentence x’ = [x;; x,; ...; x,,] for a classifier F satisfies:

(1) F(x) =o(x) = o(x") but F(x') # o(x"), where o(-) is the oracle (e.g.,
human decision-maker);

(2) ||t; —ti ||, <€ fori=1,2,3,..
embedding of x; .

Step 2: Improve the robustness of the global feature Z by aligning it with the local anchored
features T,

« In practice, we can use the final-layer [CLS] embedding of BERT to represent global
sentence-level feature Z

‘n, where € > 0 and t; is the word Use information theoretic tool to increase the mutual information I/ (Tkj; Z) between local

anchored feature T, and global feature Z, so that Z can share more robust information




