Graph-Driven Generative Models for Heterogeneous Multi-Task Learning

Wenlin Wang¹, Hongteng Xu², Zhe Gan³, Bai Li¹, Guoyin Wang¹ Liqun Chen¹, Qian Yang¹, Wenqi Wang⁴ and Lawrence Carin¹

 $^1\mathrm{Duke}$ University, $^2\mathrm{Infinia}$ ML, $^3\mathrm{Microsoft}$ Dynamics 365 Al Research, $^4\mathrm{Facebook}$

CONTRIBUTION

Propose a graph-driven generative model that unifies heterogeneous learning tasks into a single framework.

- A single graph structure shared by different generative processes.
- A GCN that embeds the nodes of the graph and specializes the organization and usage to different tasks.
- A universal solution for healthcare tasks, including clinical topic model, procedure recommendation and admission type prediction.

GRAPH-DRIVEN VAEs

Heterogeneous multi-task learning: We model heterogeneous multi-tasks with multiple generative processes

$$\boldsymbol{y}_k \sim p_{\theta_k}(\boldsymbol{y}_k|\boldsymbol{z}_k), \quad \boldsymbol{z}_k \sim p(\boldsymbol{z}_k), \quad k = 1, \dots, K.$$
 (1)

with corresponding inference networks specified as

$$\boldsymbol{z}_k \sim q_{\psi_k}(\boldsymbol{z}_k|f_{\phi}(\boldsymbol{x}_k)), \quad k = 1, \dots, K.$$
 (2)

The goal is to maximize the following evidence lower bound (ELBO)

$$\mathcal{L}(\theta_{1:K}, \psi_{1:K}, \phi) = \sum_{k} \left[\mathbb{E}_{q_{\psi_{k}}(\boldsymbol{z}_{k}|f_{\phi}(\boldsymbol{x}_{k}))} [\log p_{\theta_{k}}(\boldsymbol{y}_{k}|\boldsymbol{z}_{k})] - \mathsf{KL}(q_{\psi_{k}}(\boldsymbol{z}_{k}|f_{\phi}(\boldsymbol{x}_{k})) \parallel p(\boldsymbol{z}_{k})) \right]. \tag{3}$$

Model tasks as sub-graphs: Since features are organized in different views and the interactions between observed entities can be different, we use a data graph $G(\mathcal{V}, \mathcal{X}, \mathbf{A})$ to model such data. A typical specification for healthcare tasks are summarized as follows

Task	\mathcal{V}_k	$rac{G_k}{x_{v_n^a}^k ext{ in } \mathcal{X}_k}$	$oldsymbol{y}_k$
Topic Modeling	\mathcal{V}	$MaxPooling(\{oldsymbol{x}_v\}_{v\in\mathcal{V}_n^d\cup\mathcal{V}_n^p})$	Bi-term ICD codes
Procedure Recommendation	$\mathcal{V}^d \cup \mathcal{V}^a$	$MaxPooling(\{oldsymbol{x}_v\}_{v\in\mathcal{V}_n^d})$	List of procedures
Admission-type Prediction	\mathcal{V}	$MaxPooling(\{oldsymbol{x}_v\}_{v \in \mathcal{V}^{d} \cup \mathcal{V}^p_n})$	Admission type, $c \in \mathcal{C}$

Construction of Edges: Two statistics are considered as edges. Edges between ICD codes Point-wise mutural information (PMI) is deployed as weight between each pair of ICD codes.

Edges between ICD codes and admissions TF-IDF is used as weight between admissions and ICD codes for each task.

MODEL ARCHITECTURE

Figure: Illustration of the proposed model for healthcare tasks.

HETEROGENEOUS MULTI-TASKS

Topic Modeling of Admissions The generative process of our neural Bi-term Topic Model (NBTM) is

 $m{z}_T \sim {\sf Dir}(m{lpha}), \quad l \sim {\sf Multi}(1, m{z}_T), \quad m{y}_T \sim {\sf Multi}(2, m{eta}_l), \qquad \mbox{(4)}$ where $m{y}_T$ is the bi-term variable, v_i, v_j are two ICD codes, $m{z}_T$ is the topic distribution.

Procedure Recommendation We consider the following generative process for procedures \boldsymbol{y}_R

 $\boldsymbol{z}_R \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}), \quad \pi_R \propto \exp\{g(\boldsymbol{z}_R)\}, \quad \boldsymbol{y}_R \sim \text{Multi}(M, \pi_R), \quad (5)$ where \boldsymbol{y}_R is $|\mathcal{V}^p|$ -dimensional variable and its instance is a list of M recommended procedures.

Admission-Type Prediction Given an admission, the goal is to predict the admission type given both its diseases and procedures. The corresponding generative process is:

 $\boldsymbol{z}_P \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}), \quad \pi_P \propto \exp\{h(\boldsymbol{z}_P)\}, \quad \boldsymbol{y}_P \sim \text{Multi}(1, \pi_P), \quad \textbf{(6)}$ where \boldsymbol{y}_P is a variable and its instance corresponds to an admission type in the set \mathcal{C} .

EXPERIMENTS

	Small	Median	Large
$ \mathcal{V}^d $	247	874	2,765
$ \mathcal{V}^p $	75	258	819
$ \mathcal{V}^a $	28, 315	30, 535	31, 213

Table: Statistics of the MIMIC-III dataset.

Topic Modeling

Method	Small				Median		Large			
	T=10	T=30	T=50	T=10	T=30	T=50	T=10	T = 30	T=50	
	LDA	0.110	0.106	0.098	0.123	0.102	0.107	0.101	0.106	0.103
	AVITM	0.132	0.125	0.121	0.135	0.110	0.107	0.123	0.116	0.108
	BTM	0.117	0.109	0.105	0.127	0.108	0.105	0.104	0.110	0.107
	GD-VAE (T)	0.142	0.141	0.135	0.140	0.137	0.132	0.128	0.129	0.123
	GD-VAE (TP)	0.142	0.138	0.136	0.143	0.137	0.134	0.129	0.127	0.125
	GD-VAE (TR)	0.147	0.147	0.144	0.146	0.141	0.137	0.136	0.133	0.127
	GD-VAE	0.151	0.149	0.145	0.148	0.144	0.140	0.136	0.137	0.131

Table: Results on topic coherence for different models.

Procedure Recommendation

	N / a + L a al	То	Top-1 (%)		То	Top-3 (%)			Top-5 (%)			Top-10 (%)		
Dataset	Method	R	P	F1	R	Р	F1	R	P	F1	R	Р	F1	
	Word2Vec	19.5	47.8	24.7	35.4	34.9	30.8	47.1	29.6	32.0	62.3	21.1	28.5	
	DWL	19.7	48.2	25.0	35.9	35.2	31.3	47.5	30.3	32.4	63.0	20.9	28.7	
Small	BPR	23.5	57.6	29.8	44.8	43.5	38.7	56.8	35.7	38.8	73.1	24.8	33.6	
	VAE-CF	24.0	57.8	30.7	46.0	43.5	39.3	57.8	35.2	39.1	74.0	24.2	33.8	
	GD-VAE	25.6	58.6	31.8	47.0	43.8	39.8	58.7	36.2	39.6	75.9	25.1	34.5	
	Word2Vec	7.8	27.6	10.9	27.7	30.5	25.1	38.3	26.9	27.7	52.8	20.1	26.1	
	DWL	8.0	27.5	11.1	27.9	30.8	25.2	39.5	27.0	27.9	53.9	20.9	27.4	
Median	BPR	10.2	35.8	14.9	38.6	40.2	34.3	49.3	33.3	34.9	65.2	23.8	31.4	
	VAE-CF	21.2	52.9	26.2	41.2	42.0	36.0	53.4	35.3	37.3	68.2	24.9	32.9	
	GD-VAE	23.2	57.9	29.6	43.2	43.9	38.2	54.6	36.0	38.4	70.4	25.3	33.7	
	Word2Vec	5.3	22.9	8.7	14.6	21.1	15.3	24.8	21.0	20.1	41.1	17.7	22.2	
	DWL	5.6	23.0	9.0	14.9	21.3	15.6	24.8	21.4	20.5	42.0	18.2	23.0	
Large	BPR	7.3	26.7	10.2	23.0	27.1	21.2	38.4	27.6	27.9	56.6	21.7	28.0	
	VAE-CF	17.8	50.1	23.5	35.2	37.9	33.4	47.9	32.4	34.6	63.0	21.7	30.2	
	GD-VAE	21.2	56.4	27.4	40.9	43.0	36.7	51.4	35.2	36.8	66.5	24.9	32.7	

Table: Comparison of various methods on procedure recommendation.

Admission-Type Prediction

Data		Small			Mediar		Large			
Method	P	R	F1	P	R	F1	P	R	F1	
TF-IDF	84.26	87.19	85.18	86.12	88.61	87.22	88.45	89.10	87.76	
Word2Vec	85.08	87.89	86.23	86.60	88.87	87.71	87.11	89.16	88.12	
FastText	84.21	87.15	85.29	86.66	88.65	87.39	88.06	89.23	88.00	
SWEM	85.56	88.10	86.77	87.01	89.28	88.12	87.55	89.88	88.67	
LEAM	85.34	88.03	86.55	87.03	89.29	88.14	87.61	89.94	88.73	
GD-VAE	87.00	89.60	88.01	88.19	89.70	88.94	89.14	91.01	90.05	

Table: Results on admission-type prediction.