
LaTeX2e guide for authors

using the EngC design

Subtitle, if you have one

ALI WOOLLATT

This guide was compiled using EngC.cls 2011/02/03, v1.10

The latest version can be downloaded from:
https://authornet.cambridge.org/information/productionguide/
LaTeX files/EngC.zip





Contents

List of illustrations page iv

List of tables v

List of boxes vi

List of contributors vii

Part I Getting started 1

1 Inference of gene networks associated with the host response to infec-

tious disease 3

1.1 Background 3

1.2 Factor models in gene expression analysis 4

1.3 Factor models 5

1.3.1 Shrinkage prior 6

1.3.2 Multiplicative gamma process 7

1.4 Discriminative models 8

1.4.1 Bayesian log-loss 8

1.4.2 Bayesian hinge-loss 10

1.5 Discriminative factor model 10

1.5.1 Multi-task learning 12

1.6 Inference 12

1.7 Experiments 15

1.7.1 Performance measures 15

1.7.2 Experimental setup 15

1.7.3 Classification results 16

1.7.4 Interpretation 19

1.8 Closing remarks 21

1.9 Inference details 22

References 26



Illustrations

1.1 Graphical model for the discriminative factor model in (1.12). Note that

ǫn has been marginalized out. 11

1.2 AUC values from 10-fold cross-validation on the ARI dataset using

the two-step approach. (Left) Non-infectious illness. (Middle) Bacterial

infection. (Right) Viral infection. 16

1.3 AUC values from 10-fold cross-validation on the TB dataset using

the two-step approach. (Left) HIV positive. (Middle-left) Active TB.

(Middle-right) Latent TB. (Right) other diseases. 17

1.4 Mean squared error. (Left) ARI dataset. (Right) TB dataset. Training

and test sets are displayed separately. 17

1.5 ROC curves from 10-fold cross validation. (Left) ARI dataset. (Right)

TB dataset. 18

1.6 Trace plots for the Gibbs sampler. (Left) Factor loadings. (Middle-left)

Factor scores. (Middle-right) Noise precision. (Right) classifier coefficients. 19

1.7 Model features for ARI data. (Left) Classification weights h. (Right)

Thresholded loading matrix A. 20



Tables

1.1 Variable augmentation specifications for classification. N (x;µ, σ2) is the

density of a Gaussian distribution with parameters µ and σ2. 11

1.2 10-fold cross-validation results for TB (left) and ARI (right) datasets. 18

1.3 10-fold cross-validation results on the ARI dataset using online VB. The

first column indicates the mini-batch size. Results in the second row

are taken from Table 1.2. AUC scores correspond from left to right to

non-infectious illness, bacterial and viral classifiers. 19

1.4 Pathway analysis for ARI data. GO terms associated with gene networks

encoded by the columns of factor loadings matrix. All associations are

significant at the 0.05 level. 21



Boxes



List of contributors

Zhe Gan

Electrical and Computer Engineering, Duke University, NC, USA

Xin Yuan

Electrical and Computer Engineering, Duke University, NC, USA

Ricardo Henao

Electrical and Computer Engineering, Duke University, NC, USA

Ephraim L. Tsalik

Emergency Medicine Service, Durham Veterans Affairs Medical Center, NC,

USA

Department of Medicine, Duke University Medical Center, NC, USA

Lawrence Carin

Electrical and Computer Engineering, Duke University, NC, USA





Part I

Getting started





1 Inference of gene networks
associated with the host response
to infectious disease

Zhe Gan†, Xin Yuan†, Ricardo Henao†, Ephraim L. Tsalik‡♭ and Lawrence
Carin†

†Electrical and Computer Engineering Department, Duke University

‡Emergency Medicine Service, Durham Veterans Affairs Medical Center

♭Department of Medicine, Duke University Medical Center

1.1 Background

From a statistical-modeling perspective, gene expression analysis can be roughly

divided into two phases: exploration and prediction. In the former, the prac-

titioner attempts to get a general understanding of a dataset by modeling its

variability in an interpretable way, such that the inferred model can serve as a

feature extractor and hypotheses-generating mechanism of the underlying bio-

logical processes. Factor models are among the most widely employed techniques

for exploratory gene expression analysis [1,2], with principal component analysis

a popular special case [3]. Predictive modeling, on the other hand, is concerned

with finding a relationship between gene expression and phenotypes, that can be

generalized to unseen samples. Examples of predictive models include classifica-

tion methods like logistic regression and support vector machines [4, 5].

Factor models infer a latent covariance structure among the genes or biomark-

ers, with data modeled as generated from a noisy low-rank matrix factorization,

manifested in terms of a loadings matrix and a factor scores matrix. Different

specifications for these matrices give rise to special cases of factor models, such

as principal components analysis [6], non-negative matrix factorization [7], in-

dependent component analysis [8], and sparse factor models [1]. Factor models

employing a sparse factor loadings matrix are of significant interest in gene-

expression analysis, as the non-zero elements in the loadings matrix may be

interpreted as correlated gene networks [1, 2, 9].

Discriminative models, in particular binary linear classification models, aim

to find a linear combination of input features or covariates to separate observed

data into two groups or phenotypes (using kernel techniques, such approaches are

readily extended to nonlinear classifiers [10]). One proceeds by first learning the

parameters of the classifier using labeled data, in which one knows the phenotype

of every data point (in a semi-supervised learning procedure, some data are

labeled and others non-labeled [11]). Once so learned, the model parameters are

fixed and used to predict the phenotype of unlabeled data; this is often termed
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the inference step [12]. In the work reported here we jointly learn the factor

model (feature learning) and classifier, and we develop a framework that scales

well to high-dimensional data.

1.2 Factor models in gene expression analysis

Gene expression analysis typically involves considering a relatively small number

of observations, each of which is composed of expression values from tens of

thousands of genes. In this setting, called the “large p, small N” problem [13], the

number of biomarkers p is much larger than the number of observations N (N ≪

p). In this regime direct analysis either using factor models or discriminative

models is infeasible, because the problem is ill-posed [14]. For factor models, in

order to yield reliable modeling, two key assumptions are widely imposed: (i) the

number of factors needed to explain the data is small (low-rank assumption of the

dataset), and (ii) each factor is responsible for explaining only a small subset of

variables. The latter also applies to discriminative models, in the sense that only

a small subset of variables are necessary for classification. From an application

point of view, this sparsity assumption yields results that can be interpreted, e.g.

the small subset of correlated genes associated with a factor correspond ideally

to biologically meaningful pathways, modules or gene networks. Factor models

can be used as a general feature extraction tool in the context of gene expression

analysis [1].

Under the Bayesian paradigm, the sparsity assumption is specified via prior

distributions, such as spike-and-slab [1,15,16] or shrinkage priors [10,17–20]. The

key difference between these two prior distribution families is that the former

assumes signal (slab) and no-signal (spike) as coming from a bi-modal distribu-

tion, whereas in the latter both signal and no-signal are modeled as a unimodal

heavy-tailed distribution, in which values close to zero are designated as no-

signal (i.e., as noise). Common choices for continuous shrinkage priors include

Student’s-t [10], double exponential (Laplace) [17], the horseshoe [18] and the

three parameter beta normal (TPBN) [20]. The TPBN is an example of global-

local shrinkage priors as defined in [19], that has demonstrated superior perfor-

mance in terms of mixing when compared to other shrinkage specifications and

spike-and-slab priors.

Factor models and discriminative models have been successfully used to iden-

tify host responses in infectious disease studies [21–26]. Such analyses are usually

performed by first using a factor model to obtain a low-dimensional representa-

tion of the data, encoded by the factor scores. A discriminative model is next

used to characterize the phenotype of interest from the factor scores. This two-

step procedure can be seen as the exploration and prediction phases described

above. Provided that both models are equipped with sparsity priors, we can use

the discriminative model to identify a subset of factor scores responsible for the

classification rule. Since these should correlate with the phenotype, they are thus
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proxies for the corresponding host response. Subsequently, we can use the factor

loadings to identify the correlated subset of genes responsible for the relevant

factor scores. As a result, we can build a classification model and learn about

the gene network that contributes to the predictor’s outcome, in a systematic

manner.

A drawback of the two-step procedure described above is that feature extrac-

tion (factor modeling) and classification are performed separately, thus the factor

model is not informed of the ultimate use of the factor scores in a classifier (it

simply tries to fit the data in a generative sense, and may ignore subtle fea-

tures of the data that are critical for the subsequent classification task). In a

discriminative factor model [27], also known as supervised dictionary learning,

the two-steps are performed jointly.

In a Bayesian setting, classification models have always been troubled with

complications in terms of learning and inference, due to the lack of conditional

conjugacy between the likelihood function implied by the decision function and

the prior distributions for the parameters of the model. Probit regression is an

interesting case, because it is perhaps the first classification model provided with

efficient inference, as a consequence of variable augmentation [28]. Although aug-

mentation schemes for logistic regression [29] and support vector machines [30]

have been proposed recently, they have not yet been combined with factor mod-

els. Since discriminative factor models using probit regression as the classifier

have been investigated [31, 32] previously, we focus this work on effective infer-

ence for discriminative factor models using logistic regression and support vector

machine classifiers.

The remainder of this chapter is organized as follows. Sections 1.3 and 1.4

describe factor models and discriminative models, respectively. Section 1.5 in-

troduces our discriminative factor model, while Section 1.6 describes the learning

and inference procedures employed. Section 1.7 presents extensive results on real

gene-expression data, and finally Section 1.8 provides summary comments and

observations about the proposed framework.

1.3 Factor models

Assume a matrix of observed data X ∈ R
p×N , where each column corresponds

to one of n ∈ {1, . . . , N} samples, xn ∈ R
p, each of which contains expression

values for p genes (while we focus the discussion on gene-expression analysis, the

basic modeling structure developed here is applicable to other biomarkers, such

as proteomics, metabolomics, etc.). We consider a linear factor model of the form

xn = AΛsn + ǫn ,

sn ∼ N (0, I) ,

ǫn ∼ N (0,Ψ−1) ,

(1.1)
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where ajk is an element of loadings matrix A ∈ R
p×K , K is the total number

of factors, ǫn is additive noise (or model residual) for the n-th sample, ψi is

an element of the noise precision matrix Ψ = diag(ψ1, . . . , ψp), λk is one of

the factor specific scaling coefficients in matrix Λ = diag(λ1, . . . , λK), and sn ∈

R
K is a vector of Gaussian distributed factor scores for the n-th observation.

While we truncate the model to a (large) upper bound of K of factors, the

shrinkage/sparsity imposed on the factor loadings allows one to infer the subset

of factors (typically less than K) actually needed to represent the data.

Provided that factor scores sn and noise terms ǫn are independent and Gaus-

sian distributed, from (1.1) it follows that xn ∼ N (0,AΛΛA⊤ + Ψ−1), i.e.,

the factor model estimates the covariance structure of data xn as a low rank

representation if K < p, once the factor scores sn are analytically marginalized

out.

The generative model encoded by (1.1) implies that the expression value for

a particular gene is a linear combination of columns of A, with the columns

weighted by the factor scores sn. We can thus see the columns of A as con-

stituting a dictionary with K gene-related dictionary elements (columns); since

A is shared among all data samples {xn}, the factor scores sn serve as a low-

dimensional representation of each xn. Prior distributions for A and Λ are spec-

ified to encourage (near) sparsity, to ease interpretability of the features encoded

by columns of A, while also being able to automatically estimate the usually un-

known number of factors needed by the model to effectively explain the data (to

infer the subset of K columns actually needed to represent the observed data).

1.3.1 Shrinkage prior

To impose (near) sparseness on the loadings matrix A, we employ the three

parameter beta normal (TPBN) prior, a general prior distribution that can be

expressed as scale mixtures of normals [20]. Specifically, if ajk ∼ TBPN(a, b, φ),

where j = 1, . . . , p, k = 1, . . . ,K, we can write

ajk ∼ N (0, ζjk) ,

ζjk ∼ Gamma(a, ξjk) ,

ξjk ∼ Gamma(b, φk) .

(1.2)

When a = b = 1/2, the TPBN prior reduces to the horseshoe prior [18]. For fixed

values of a and b, φk controls the shrinkage level of the k-th column of A, so that

smaller values of φk yield stronger shrinkage. Furthermore, we can set a prior on

φk to allow the model to learn individual shrinkage levels for each column of A.

For instance,

φk ∼ Gamma
(

1
2 , w

)

,

w ∼ Gamma
(

1
2 , 1
)

,
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where w is a latent variable whose distribution serves as support for the shrinkage

levels ofA. Alternatively, when prior knowledge about the expected sparsity level

of A is available, φk can be set accordingly, rather than inferred from data.

The prior in (1.2) also encompasses as special cases well known shrinkage

priors, such as double-exponential [17, 33], Strawderman-Berger [34], Normal-

Exponential-Gamma [35] and horseshoe [18] priors. Further, it can be seen as

an example of a yet larger family of continuous shrinkage hierarchies, known as

global-local shrinkage priors [19, 36].

One of the most appealing features of (1.2) is its excellent mixing proper-

ties, which stem from the fact of it being marginally a continuous unimodal

distribution with closed-form conditional posteriors. Bimodal sparsity, including

distributions such as spike-and-slab [1, 15] and the Indian buffet process [37],

often face mixing difficulties, whereas commonly used unimodal shrinkage priors

(such as double-exponential and Student’s-t) are not flexible enough as they tend

to over-shrink coefficients with values far away from zero, as previously shown

in [18].

1.3.2 Multiplicative gamma process

The multiplicative gamma process (MGP), originally proposed in [38], is im-

posed on the factor loadings matrix, A, as a global shrinkage prior to estimate

the effective number of factors. We choose it over more involved approaches, such

as reversible jump Markov chain Monte Carlo [39] or discrete variable selection

priors such as Indian buffet processes [37], beta processes [40] or evolutionary

stochastic model search [1]. The multiplicative gamma process introduces in-

finitely many factors to the model in a way that the variance of each column of

the loadings A will stochastically shrink towards zero, as the index of the column

increases. Alternatively, we can impose the MGP on the scaling coefficients of

the factors denoted by Λ in (1.1) similar to [41], in which the factorization AΛsn

is seen as a sum of K rank-one matrices weighted by the elements of Λ, such

that large indices k will have negligible impact on the full factorization, which

is in essence similar to a singular value decomposition. From the model in (1.1),

if Λ = diag(λ1, . . . , λK) ∼ MGP(a1, a2), then

λk ∼ N (0, τ−1
k ) , τk =

k
∏

l=1

δl ,

δ1 ∼ Gamma(a1, 1) , δl ∼ Gamma(a2, 1) , for l ≥ 2 ,

(1.3)

where δl for l = 1, . . . ,∞ are independent. Each term of
∏k
l=1 δl is stochasti-

cally increasing provided that a2 > 1, therefore the precision of the Gaussian

distribution, τk, will shrink λk towards zero as k increases. As described in [38],

inference for the MGP prior in (1.3) can be done in two ways: (i) Approximate

the potentially infinite number of columns of Λ by setting K to a reasonably

large truncation level. (ii) Selecting the number of factors adaptively. Here we
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choose the former because, as stated in [38], it produces accurate estimates of

the effective number of factors as long as the selected truncation level is large

enough; further, it is computationally simpler than the adaptive approach.

One additional benefit of the MGP prior is that it helps alleviate one of the

sources of lack of identifiability in factor models. Having stochastically ordered

columns for A helps mitigate factor switching during inference, which happens

due to the well known permutation ambiguity of factor models; i.e., the factor

models AΛsn and AΛP−1Psn, where P is an arbitrary permutation matrix,

have the same likelihood [14]. In the case of (1.3), P is no longer arbitrary as

{τk}
K
k=1 couples the elements ofΛ, which as a result locks the ordering of columns

of A and elements of sn.

1.4 Discriminative models

Consider a set of K covariates sn with an associated binary label yn. The goal

of a discriminative model is to predict the label y⋆ of unseen covariates s⋆. In

a probabilistic model this usually amounts to estimating the joint distribution

p(y, s) from a training set {yn, sn}
N
n=1, then to use the predictive distribution

p(y⋆|s⋆) to estimate y⋆. In the linear case, we can parameterize the model as

yn = g(h⊤sn) , (1.4)

where g(·) : RK → {−1, 1} or g(·) : RK → {0, 1} are mapping functions and

h ∈ R
K is a vector of classification coefficients weighting the relative contribution

of each of the K covariates to the decision process.

One of the most common choices for function g(·) in (1.4), in Bayesian mod-

eling, is the Heaviside step function that gives rise to probit regression, in which

case it can be shown that p(yn = 1|sn) = Φ(h⊤sn), where Φ(·) is the cumulative

density function of a standard Gaussian distribution [12]. The popularity of the

probit function is likely due to the fact that an effective and easy-to-implement

inference procedure based on variable augmentation exists [28]. Another two al-

ternatives inspired by the machine learning community are logistic regression

and support vector classification, each of which has an associated loss func-

tion: log-loss and hinge-loss, respectively [12]. Since Bayesian probit regression

is a well understood model, we focus the remainder of this section on recently

proposed variable augmentation approaches for logistic regression and support

vector classification.

1.4.1 Bayesian log-loss

The log-loss is defined as the logarithm of a Bernoulli likelihood, so for yn ∈ {0, 1}

and the model in (1.4) we can write

ℓ(yn, sn,h) = yn log(g(h
⊤sn)) + (1− yn) log(1− g(h⊤sn)) . (1.5)
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From a Bayesian perspective, instead of optimizing for h using the loss func-

tion in (1.5), we estimate the posterior distribution p(h|y, s) using the variable-

augmentation approach proposed in [29]; to do this, we first introduce the Pólya-

Gamma random variables.

A random variable X has a Pólya-Gamma distribution with parameters b > 0

and c ∈ R, denoted X ∼ PG(b, c), if

X =
1

2π2

∞
∑

k=1

gk
(k − 1/2)2 + c2/(4π2)

,

where each gk ∼ Gamma(b, 1) is an independent gamma random variable [29].

A key result of [29] is that Bernoulli likelihoods, yn ∼ Bernoulli(σ(h⊤sn)),

parameterized by the log-odds, h⊤sn, and the logistic function, σ(x) = 1/(1 +

exp(−x)), can be written as scale mixtures of Gaussians w.r.t Pólya-Gamma

distributions; this is, if γ ∼ PG(b, 0), then

exp(ψ)a

(1 + exp(ψ))b
= 2−b exp(κψ)

∫ ∞

0

exp

(

−
γψ2

2

)

p(γ)dγ , (1.6)

where κ = a − b/2 and γ|ψ ∼ PG(b, ψ). For the logistic regression model, the

likelihood function can be written as

L(yn|h, sn) =
exp(ynh

⊤sn)

1 + exp(h⊤sn)
. (1.7)

Let a = yn, b = 1, ψ = h⊤sn, using the Pólya-Gamma data augmentation

in (1.6), we can rewrite the likelihood in (1.7) as

L(yn|h, sn, γn) ∝ exp

{

κnh
⊤sn −

1

2
γn(h

⊤sn)
2

}

∝ exp

{

−
γn
2

(

h⊤sn −
κn
γn

)2
}

∝ exp

{

−
1

2
(zn − h⊤sn)

⊤Γ(zn − h⊤sn)

}

,

where κn = yn − 1
2 , zn = κn/γn, Γ = diag(γ) and γ = [γ1 . . . γN ]. Therefore,

the augmented model for h can be expressed as

h|y,S,γ ∝ p(h)
N
∏

n=1

L(yn|h, sn, γn) , (1.8)

γn ∼ PG(1, 0) ,

where y = [y1 . . . yN ], S = [s1 . . . sN ] and p(h) is the prior for h. Note that

if p(h) is Gaussian, due to conjugacy, the conditional posterior p(h|y,S) will

have the same distribution because the likelihood L(yn|h, sn, γn) is conditionally

Gaussian w.r.t. h.
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1.4.2 Bayesian hinge-loss

The hinge-loss, most popular for its role in support vector machines (SVMs) [42],

can be written for labels yn ∈ {−1, 1} as

ℓ(yn, sn,h) = max(1− ynh
⊤sn, 0) . (1.9)

Minimizing (1.9) amounts to finding a decision boundary {sn : h⊤sn = 0} with

associated decision function, sign(h⊤sn), such that the distance between the so

called margin boundaries defined as {sn : h⊤sn = ±1} is as large as possible,

hence discriminative models based on the hinge-loss are called max-margin clas-

sifiers [42]. Unlike the log-loss, the hinge-loss only penalizes misclassifications

and margin violations, which stems from the fact that ℓ(yn, sn,h) = 0 whenever

ynh
⊤sn > 1.

Within the Bayesian framework, we can use (1.9) to form a pseudo-likelihood

function that can be written as

L(yn|h, sn) = exp
{

−2max(1− ynh
⊤sn, 0)

}

, (1.10)

which admits a location-scale mixture of Gaussian representation, by making use

of the following integral identity introduced in [43]

exp{−2max(u, 0)} =

∫ ∞

0

N (u| − γ, γ)dγ . (1.11)

From (1.10) and (1.11) we obtain an augmented likelihood expressed as

L(yn|h, sn, γn) ∝ γ−1/2
n exp

(

−
1

2

(1 + γn − ynh
⊤sn)

2

γn

)

,

which we recognize as the core of a Gaussian density with variance γn [44]. Inter-

estingly, we get a similar augmented model to that of (1.8) but with conditional

posterior γ−1
n ∼ IG(|1 − ynh

⊤sn|, 1) instead of γn ∼ PG(1,h⊤sn) [29], where

IG(·, ·) is the inverse Gaussian distribution [43].

1.5 Discriminative factor model

In the previous two sections, we introduced factor models and discriminative

models. We next consider the problem of jointly learning both, by connecting

them through the factor scores matrix S. Intuitively, instead of doing dimen-

sionality reduction and classification separately as a two-step process, we use

the discriminative model as a way to inform the factor model about the fact

that its low-dimensional representation of data, S, should be biased towards dis-

criminative power. As a result, we obtain a factor model with two goals: explain

the data via covariance structure estimation and produce a classification rule via

dimensionality reduction, using factor scores as proxy for data.
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Figure 1.1 Graphical model for the discriminative factor model in (1.12). Note that ǫn
has been marginalized out.

Our discriminative factor-model specification with graphical model shown in

Figure 1.1 can be written as

xn = AΛsn + ǫn ,

yn = g(h⊤sn) ,

ajk ∼ TPBN(a, b, φk) ,

Λ ∼ MGP(a1, a2) ,

sn ∼ N (0, I) ,

ǫn ∼ N (0,Ψ−1) ,

hk ∼ TPBN(a, b, φ) ,

(1.12)

where g(h⊤sn) is the decision function corresponding to either log-loss or hinge-

loss, as described in the previous section and summarized in Table 1.1.

Table 1.1 Variable augmentation specifications for classification. N (x;µ, σ2) is the
density of a Gaussian distribution with parameters µ and σ2.

Classifier L(yn|h, sn, γn) p(γn) g(·)

Probit I(γn > 0) N (h⊤
sn, 1) I(h⊤

sn > 0)

Logistic N
(

h
⊤
sn; (yn − 1

2
)γ−1

n , γ−1

n

)

PG(1, 0) I(h⊤
sn > 0)

Max-margin N
(

1− ynh
⊤
sn;−γn, γn

)

Uniform(0,∞) sign(h⊤
sn)

Note that we have provided the vector of classifier weights, h, with the same

shrinkage prior imposed on the elements of the factor loadings matrix, A. This

is done to acknowledge that only a subset of the factors learned by the model

will likely be geared towards discrimination, while the remaining ones may be

entirely (or primarily) focused on explaining the data.

From Figure 1.1 we see that conditioned on the factor scores, S, data and

labels are conditionally independent, meaning that inference-wise S is the only

variable in the model whose conditional posterior is both dependent on X and

y, data and labels, respectively. It also implies that inference for all the other

variables of the model remains conveniently unchanged, when compared to say

just the factor model in (1.1).
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1.5.1 Multi-task learning

The proposed discriminative factor model can be readily extended to a multi-task

learning setting, in which multiple binary classification problems are performed

jointly. This mechanism has the benefit of information sharing across tasks, thus

enhancing the representation learned by the model [23, 45, 46]. For instance, in

our proposed model, the classifier coefficients may be different in multiple tasks,

but the matrix factorization mechanism, i.e. the inferred matricesA,Λ and S are

shared, thereby utilizing all label information to make the model discriminative,

but assuming that the original high-dimensional gene data lies in a common

low-dimensional subspace for all tasks.

Consider the situation in which c ∈ {1, . . . , C} tasks performed together. The

complete model can be expressed as

xn = AΛsn + ǫn ,

y(c)n = g
(

(h(c))⊤sn

)

,

γ(c)n ∼ p(γ(c)n ) ,

(1.13)

where superscript (c) represents a specific task, and g(·) and p(γ(c)) are one of

the choices in Table 1.1, depending on the classification model to be used. By

comparing (1.12) and (1.13), we see that the factor model part of the hierarchy

remains unchanged, and only the discriminative component reflects that we are

feeding more information to the model. As a result of this, we expect the model to

learn a richer low-dimensional representation, S, thus a larger number of factors

K are likely to be used.

The model in (1.13) can also be used for multi-class tasks, if we encode ỹn ∈

{1, . . . , C}, where C is the number of classes, as separate binary “tasks”. For this

purpose we use a one-vs-all encoding, in which we learn a multi-class model by

learning C binary classifiers, each of which attempts to differentiate one of the

classes from all the others. Once built, the classification rule is

ỹn = argmaxc (h
(c))⊤sn .

In biologically-motivated applications, learning multiple binary classifiers, as op-

posed to a single multi-class model, is beneficial in the sense that we can use

individual classification coefficient vectors, h(c), to drive the interpretation of

the model one phenotype at the time.

1.6 Inference

Learning the parameters of the model in (1.12) (or (1.13)) with classification

specifications in Table 1.1 can be done either via Markov chain Monte Carlo

(MCMC) [47, 48] or a mean field Variational Bayes (VB) approximation [49].

The MCMC algorithm involves a sequence of Gibbs updates, where each latent

variable is iteratively resampled conditioned on instances of all the others.
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Variational Bayes

The VB framework attempts to approximate the full posterior distribution of the

model by a simpler distribution, q(Θ) ≈ p(Θ|y,X), where Θ = {ajk, λk, skn, ψj ,

ζjk, ξjk, φk, w, δk, hk, γn}, for j = 1, . . . , p, k = 1, . . . ,K, denotes the set of in-

dependent latent variables in the model and X = [x1, . . . ,xN ], y = [y1, . . . , yN ]

represent observed data and labels, respectively. Specifically, VB assumes a com-

plete factorization across latent variables, q(Θ) =
∏

i qi(θi), where θi is an ele-

ment of Θ.

Solving for the optimal distribution q⋆(Θ) that minimizes the distance between

p and q effectively estimates the conditional posterior distribution p(Θ|y,X). A

commonly-used distance metric between the two distributions functions is the

Kullback-Leibler (KL) divergence [50]. We write the KL-divergence of p from q

as follows:

KL(q‖p) =

∫

Θ

q(Θ) log
q(Θ)

p(Θ|y,X)
dΘ,

through which

log p(y,X) = KL(q‖p) + L(q),

L(q) = −

∫

Θ

q(Θ) log
q(Θ)

p(Θ,y,X)
dΘ.

Observe that log p(y,X) is fixed w.r.t. the variations in q(Θ). Therefore, max-

imizing the Evidence Lower Bound (ELBO), L(q), is equivalent to minimizing

the KL-divergence between the two distributions. This minimal distance occurs

when

log q⋆(Θ) = E[log p(y,X,Θ)] + const.

Assuming a complete factorization across the latent variables q(Θ) =
∏

i qi(θi),

each parameter in a variational Bayes approximation is independently updated

according to

q⋆j (Θj) ∝ exp{Ei6=j [log p(y,X,Θ)]}.

For the models considered here, both MCMC and VB are straightforward to

implement, because local conjugacy of all the parameters of the model allows

us to write corresponding conditional posteriors in closed form. A sketch of the

inference procedures, and details of conditional posterior distributions of all the

parameters of the model, are found in Section 1.9.

Scaling up

Every iteration of the VB inference algorithm requires a full pass through the

dataset, which can be time consuming when applied to large datasets. Therefore,

an online version of VB inference can be developed, building upon a recent

online implementation for latent Dirichlet allocation [51]. Online VB exploits

the difference between local variables, which are observation dependent, and

global variables, which are shared among the entire dataset. In the context of
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factor models, the data are the gene expression values of an individual, the global

variables are the factor loadings (shared among all data samples), and the local

variables are individual-specific factor scores.

In practice, stochastic optimization is applied to the variational objective func-

tion in the online VB representation [52]. The key observation is that the co-

ordinate ascent updates in VB precisely correspond to the natural gradient of

the variational objective function. Considering that we split the entire dataset

with N observations into D mini-batches, the following steps are repeated to

implement the online VB.

1. Randomly select one mini-batch; optimize its local variational parameters.

2. Obtain the current estimate of the global variational parameters, as though

we were running classical coordinate ascent update on the dataset formed by

repeating N/D times of the selected mini-batches.

3. Update the global variational parameters to be a weighted average of the

current estimate and previous estimate.

To be more specific, the global variables are denoted asΘg = {ajk, λk, ψj , ζjk, ξjk,

φk, w, δk, hk} and the local variables are denoted as Θl = {skn, γn}, for j =

1, . . . , p, k = 1, . . . ,K and n = 1, . . . , N . The update of one global variable θg,

after seeing the mini-batch indexed by l, becomes

θ(l)g = (1− ρl)θ
(l−1)
g + ρlθ

∗
g ,

where θ∗g is the current estimate and ρl = (ρ0+ l)
−κ is an appropriately decreas-

ing learning rate. To ensure that the global parameters converge to a stationary

point, we set κ ∈ (0.5, 1] and ρ0 > 0. The update of local variational parameters

are the same as the batch VB inference. This modeling and inference frame-

work allows one to scale up the analysis to “big data,” with a large number of

biomarkers (large p) as well as a large number of sample N , although in practice

we still typically deal with N < p.

Computational cost

The computational cost of the factor model with or without the classifier is

roughly O(pK2) per iteration. In our experience, we find that between 50 and

100 VB iterations are enough for the model to stabilize. It is important to take

into account that the time needed to run any of the models proposed here is

significantly smaller than the time needed to generate the data, thus statistical

analyses performed using our models will not constitute a bottleneck in real-

world applications.

Implementation and availability

All the code used for the experiments including implementations of the models

considered was written in Matlab and can be found at:

http://www.duke.edu/~rh137/host.html.
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1.7 Experiments

In this section, we present extensive experiments on two real-world microarray-

based gene expression datasets, from two studies about infectious diseases. In

the following, we briefly describe the data and performance measures used to

evaluate the models being compared. Extensive numerical results are provided,

with model interpretation delivered via pathway association analysis.

ARI dataset

The Acute Respiratory Infection (ARI) dataset is developed with the goal of

differentiating bacterial from viral infections in the context of a relatively het-

erogeneous cohort, also containing subjects with non-infectious illnesses. It is

composed of intensities of p = 22277 probes from Affymetrix HG-U133A 2.0 ar-

rays with N = 280 subjects categorized into the following three groups: bacterial

(70), viral (115) and non-infectious illness (88). For the analysis, we keep the top

25% (5569) GCRMA normalized [53] probes with largest intensity profiles.

TB dataset

This particular tuberculosis (TB) dataset1 is the result of a recently published

study [54], which consists of gene expression intensities for 47323 genes and

N = 491 subjects measured using Illumina HumanHT-12 V4.0 expression bead-

chips, categorized in four phenotypes: active TB (190), latent TB (68), other

diseases (233) and HIV positive (161). The raw data were preprocessed using

background correction, quantile normalized signal intensities, log-transformation

and gene filtering. For the analysis we keep the top p = 4732 genes with largest

intensity profiles.

1.7.1 Performance measures

The performance of factor models is evaluated by the mean squared error (MSE)

between the original observation matrix X, and the reconstructed matrix X̂ =

AΛS, where A, Λ and S are the inferred factor loadings, factor scaling ma-

trix and factor scores, respectively. To be more precise, MSE is defined as
1
N

∑N
n=1

√

∑p
j=1(Xjn − X̂jn)2. Classification is done within a 10-fold cross vali-

dation (CV) framework and the receiver operating characteristic (ROC) [55], area

under curve (AUC), classification accuracy (ACC), true positive rate (TPR) and

true false rate (TNR) are reported as quantitative performance measures. CPU

time is also recorded as proxy for computational cost.

1.7.2 Experimental setup

Inference is performed via VB and the maximum number of iterations is set to 60.

We verified empirically that further increasing iterations does not significantly

1 Available at: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39941.
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change the outcome of any of our models. A Gibbs sampler is implemented as

well, which is set to 2000 burn-in iterations and 1000 posterior collection samples.

In order to address potential large-scale datasets, an on-line version of the VB

inference is further developed. All computations are carried out on a 3.40GHz

desktop with 12GB RAM.

When implementing the inference algorithms, we initialize A and S randomly

using isotropic normals with standard deviation 1, and set Λ to be the identity

matrix. To impose strong sparsity, the hyper-parameters φk, k = 1, . . . ,K in

the TPBN prior are all set to be 10−4 rather than inferred from the data. The

hyper-parameters of the precision ψj , j = 1, . . . , p are aψ = 1.1 and bψ = 10−3.

For the ARI dataset, the hyper-parameters of the MGP are set to a1 = 2.1 and

a2 = 3.1, and the truncation level of the MGP to K = 50. For the TB dataset,

we set a1 = 1.1, a2 = 2.1 and K = 100.

1.7.3 Classification results

Recall that our model is built using a multi-task learning scheme, in which a

factor model jointly learns several predictors, e.g., 4 in the TB dataset: HIV

positive vs. HIV negative, active TB vs. others, latent TB vs. others and other

diseases vs. all TB. The discriminative models are implemented either by probit,

logistic or max-margin classifiers as previously shown in Table 1.1.
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Figure 1.2 AUC values from 10-fold cross-validation on the ARI dataset using the
two-step approach. (Left) Non-infectious illness. (Middle) Bacterial infection. (Right)
Viral infection.

Two-step approach

For illustration, we first train the factor model and the one-vs-all classifiers sep-

arately in a two-step approach. The MGP is not utilized in the factor model

in order to investigate the impact of the number of factors on the classification

performance. Figures 1.2 and 1.3 show AUCs resulting from this two-step ap-

proach for the two datasets, ARI and TB, respectively. It can be seen that the

logistic classifier consistently achieves a better classification performance when

compared with the other two methods. Using a different number of factors re-

sults in different classification accuracies. The number of factors that yields the

best performance is close 20 and 40 for ARI and TB data, respectively.
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Figure 1.3 AUC values from 10-fold cross-validation on the TB dataset using the
two-step approach. (Left) HIV positive. (Middle-left) Active TB. (Middle-right)
Latent TB. (Right) other diseases.

Discriminative factor model

We show the results using the proposed discriminative factor model from Sec-

tion 1.5 to verify that exploiting the label information during the process of factor

modeling can further improve the classification performance. Further, that us-

ing the MGP prior can sidestep the model selection issue, and provides us with

reasonable choices of the number of factors.
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Figure 1.4 Mean squared error. (Left) ARI dataset. (Right) TB dataset. Training and
test sets are displayed separately.

Figure 1.4 plots the mean squared error (MSE) between the model reconstruc-

tion and the original data. It also shows that VB inference converges quickly, i.e.,

10 iterations provides a stable result. Furthermore, the MSE for training and test

sets does not differ considerably, which indicates that our discriminative factor

model has the ability to successfully prevent overfitting, due to the utilization of

the TPBN shrinkage priors.

Since the logistic classifier empirically achieves the best performance, as dis-

cussed below, only the ROC curves for the logistic classifier are plotted in Fig-

ure 1.5. The AUCs, ACCs, TPRs and TNRs are detailed in Table 1.2, both for

ARI and TB data. For each fold, we calculate AUC, ACC and MSE values, and

report averaged results with corresponding error bars (standard deviations). The

TPRs and TNRs are calculated on the full set of cross-validated predictions, thus

no error bars are available.

From Table 1.2 we see that on average 20 and 42 factors are inferred from
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Figure 1.5 ROC curves from 10-fold cross validation. (Left) ARI dataset. (Right) TB
dataset.

Table 1.2 10-fold cross-validation results for TB (left) and ARI (right) datasets.

Measure Logistic Max-margin Probit Logistic Max-margin Probit

HIV positive vs. HIV negative Non-infectious illness vs. others
AUC (%) 95.18± 1.63 93.67± 3.42 92.48± 4.93 93.57± 5.39 91.35± 5.91 92.81± 5.90

ACC (%) 89.84± 3.71 87.10± 4.80 86.26± 5.90 87.50± 6.57 86.43± 6.48 85.36± 6.83

TPR (%) 85.98 82.24 79.44 90.00 81.11 84.44
TNR (%) 92.07 87.22 88.55 85.26 87.89 85.26

Active TB vs. others Bacterial infection vs. others
AUC (%) 91.52± 6.50 86.89± 8.08 91.44± 4.87 93.85± 5.68 91.47± 9.32 92.51± 6.92

ACC (%) 86.27± 5.50 82.64± 5.26 85.95± 7.58 90.00± 6.48 84.64± 8.59 88.57± 4.39

TPR (%) 79.28 76.58 85.59 87.67 80.82 84.93
TNR (%) 89.69 82.96 78.48 87.92 87.92 88.89

Latent TB vs. others Viral infection vs. others
AUC (%) 96.18± 4.17 93.47± 6.55 94.02± 5.28 95.61± 4.38 94.19± 5.05 94.90± 4.46

ACC (%) 93.13± 5.76 90.73± 5.56 90.42± 4.45 91.07± 5.12 89.64± 4.89 88.93± 7.23

TPR (%) 87.04 87.04 90.74 88.89 85.47 83.76
TNR (%) 94.29 85.00 84.29 92.64 92.02 95.09

Other diseases vs. all TB
AUC (%) 88.11± 3.88 84.93± 5.89 86.79± 4.61

ACC (%) 79.64± 4.88 75.74± 5.96 79.05± 4.41

TPR (%) 81.07 78.11 77.51
TNR (%) 77.58 74.55 80.61

Factors 42.0± 8.43 40.4± 8.88 43.6± 8.88 20.40± 3.27 19.80± 2.44 20.50± 1.96

Train MSE 39.84± 1.26 40.03± 1.42 39.59± 1.07 23.02± 0.82 23.19± 0.61 22.99± 0.56

Test MSE 45.01± 1.86 45.21± 1.86 44.95± 1.92 24.98± 1.08 25.09± 0.86 24.93± 0.78

Time (s) 3031.2± 44.2 3114.0± 25.5 3039.6± 43.4 2161.6± 15.2 2097.7± 8.2 2105.2± 22.5

ARI and TB data, respectively, which is consistent with the model selection

results by choosing the model with the highest AUC scores in Figures 1.2 and

1.3. This implies our MGP prior has the ability to choose an adequate number

of factors. In terms of classification, all the classifiers we have presented achieve

comparable performances, among which the logistic classifier performs best. The

good prediction performance indicates that our model has the ability to find the

potentially important factors, thus it is able to successfully characterize the host

response to the stimuli considered. Furthermore, since the TB dataset has more

categories to predict, the number of inferred factors is larger compared to the

ARI dataset as one may expected.

Inference via Gibbs sampling results in similar performances, thus those results
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are not presented, for brevity. Nevertheless, we show trace plots in Figure 1.6

by randomly selecting one element from the factor loadings A, factor scores S,

noise precision Ψ and classifier coefficients h, respectively. It is observed that

the Gibbs sampler yields in general good mixing; the trace plot for A clearly

demonstrates the shrinkage imposed on the factor loadings through the TPBN

prior.
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Figure 1.6 Trace plots for the Gibbs sampler. (Left) Factor loadings. (Middle-left)
Factor scores. (Middle-right) Noise precision. (Right) classifier coefficients.

Online learning

To demonstrate the ability of our proposed model to scale up to large datasets, we

present results on the ARI dataset, using our implementation of online VB with

the logistic classifier. Local parameters are updated using 20 iterations per mini-

batch, and results are shown for 4 epochs. The learning rate is ρl = (ρ0 + l)−κ,

and we set ρ0 = 1 and κ = 0.5. Results are summarized in Table 1.3. We

see that online VB can achieve almost the same performance as batch VB, in

terms of both factor modeling and classification; at the same time, online VB is

considerably less computationally expensive.

Table 1.3 10-fold cross-validation results on the ARI dataset using online VB. The first
column indicates the mini-batch size. Results in the second row are taken from Table 1.2.
AUC scores correspond from left to right to non-infectious illness, bacterial and viral
classifiers.

Size CPU time (s) MSE AUC (%)

252 2161.6± 15.2 24.98± 1.08 93.57± 5.39 93.85± 5.68 95.61± 4.38

126 1087.5± 3.9 25.72± 1.22 92.16± 7.51 90.62± 6.98 94.67± 4.16

63 881.3± 3.1 25.83± 1.11 92.81± 6.90 90.87± 7.41 94.63± 4.57

36 857.4± 3.7 26.68± 1.15 91.29± 6.08 90.14± 9.60 93.13± 5.89

1.7.4 Interpretation

Interpretation of our discriminative factor model is based on the factor loadings

and classification weights, A and h, respectively. As previously discussed, we

can relate columns in A, the factors, to networks of correlated genes and the

magnitude of the weights in h as a measure of the relative importance of each
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factor to the classification outcome. Figure 1.7(left) shows classification weights

for each of the three classifiers built for the ARI dataset. We see that individual

factors contrast different phenotypes, for example factor 1 is specific to bacterial

infection, factors 2 and 3 to viral infection, and so on. Figure 1.7(Right) shows

a thresholded version of loadings matrix A, where we have set to zero any of

its elements such that {ajk : |ajk| < 3std(a1k, . . . , apk)}. This procedure not

only eases visualization but helps subsequent interpretation by only focusing on

the genes that have an important contribution to the factor scores, and thus to

the discriminative models. Note that nearly half of the genes are not present in

the thresholded loading matrix in Figure 1.7(right), meaning that they are for

the most part considered by the model as “noise”, thus explained by ǫn rather

than Asn. After thresholding each of the 21 factors found by the model con-

stitute gene networks of approximately 300 genes each. Interpretation of the
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Figure 1.7 Model features for ARI data. (Left) Classification weights h. (Right)
Thresholded loading matrix A.

gene networks encoded by the loadings matrix is done by means of a pathway

association analysis using DAVID [56]. The idea is to statistically quantify the

association between a set of genes (factor) to a biological theme, function or

pathway. In our analysis we particularly focus on Gene Ontology (GO) terms

related to molecular function, however if the application requires it one may

rather target it to pathway databases or medical terms. Table 1.4 shows the size

of each gene network and the top GO associations corresponding to the top 7

factors with largest absolute classification weights, as shown in Figure 1.7(left).

In parentheses are the number of genes in the network associated with a par-

ticular pathway. All associations are significant at the 0.05 level with p-values

corrected for multiple testing using Benjamin and Hochberg [57]. From Table 1.4

we see GO terms intimately related to host response to infectious diseases, such

as, immune response, defense response and inflammatory response, but more

interestingly we see some factors targeting particular biological functions, for

example, factors 1 and 3 confirm our interpretation of the classifier weights from

Figure 1.7(left), in terms of them being specific of bacterial and viral infections,

respectively, whereas factor 6 has apoptosis as its main theme. Complete tables

containing all associations, not only the statistically significant ones, p-values
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Table 1.4 Pathway analysis for ARI data. GO terms associated with gene networks
encoded by the columns of factor loadings matrix. All associations are significant at the
0.05 level.

ID N GO terms

1 252 Defense response (43), immune response (45), response to wounding
(36), inflammatory response (26), positive regulation of immune system
process (20), response to bacterium (18), innate immune response (15).

2 447 Golgi apparatus (46), nuclear lumen (65), intracellular organelle lumen
(74), organelle lumen (75), endoplasmic reticulum (47).

3 286 Immune response (43), response to virus (13), nucleic acid transport
(12), RNA transport (12), establishment of RNA localization (12), RNA
localization (12).

4 301 Immune response (32), programmed cell death (27), death (28), defense
response (26), positive regulation of immune system process (15)

5 291 Immune response (49), defense response (33), lymphocyte activation
(16), innate immune response (13), leukocyte activation (17), cell ac-
tivation (17), response to virus (11), response to vitamin (8), response
to organic substance (28)

6 295 Negative regulation of cell death (21), negative regulation of pro-
grammed cell death (21), macromolecular complex subunit organiza-
tion (31), immune response (31), nucleosome assembly (10), negative
regulation of apoptosis (21)

7 302 Immune response (47), defense response (33), antigen processing and
presentation (11), regulation of apoptosis (34), regulation of pro-
grammed cell death (34), regulation of cell death (34), vesicle-mediated
transport (27)

with different correction methods and gene lists for each GO term can be found

at: http://www.duke.edu/~rh137/host.html.

We also performed a thorough pathway association analysis for the TB dataset

with results as biologically relevant as those in Table 1.4. Complete tables of

association and plots similar to those in Figure 1.7 can be found at:

http://www.duke.edu/~rh137/host.html.

1.8 Closing remarks

This book chapter highlights the importance of Bayesian modeling for gene ex-

pression analysis. Discriminative factor models, which are the particular theme

of this chapter, are presented within a principled framework to jointly build fac-

tor models and multiple classifiers. As an alternative to Bayesian classifiers based

on the traditional probit link, we have integrated logistic regression and support

vector classification into our modeling scheme, using novel variable augmenta-

tion techniques. We have equipped the factor models with global-local shrinkage

priors, recently proposed within the machine learning community. Our model

can infer the number of factors automatically from the data. We also provide

extensions to multi-task learning. Inference is developed using both MCMC and
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variational Bayes algorithms, while online learning is further investigated to scale

the model to large datasets.

It is understood that real-world datasets are getting larger and also more

complex. One important research direction is to develop factor models with built-

in nonlinear classifiers, since the data may not be always separable in the linear

subspace implied by our factor model specification. We have made some progress

with a discriminative factor model using nonlinear classifiers, based on mixtures

of locally linear classifiers or support vector machines [58]. However, this new

methodology still needs a considerable amount of study, thus is left as future

work. Another possibility we have been considering is to relax the Gaussianity

assumption implied by the likelihood function of our factor model, which may be

useful in other types of omics data, such as proteomics, metabolomics and RNA

sequencing. In particular, we are considering replacing the Gaussian likelihood in

our model with a likelihood function for ranked data, so we can seamlessly treat

ordinal, continuous and discrete data all within the same family of generalized

discriminative factor models [59].
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1.9 Inference details

Given all the conditional posterior distributions for all the parameters involved

in (1.12), MCMC based on Gibbs sampling and mean-field VB inference can be

easily implemented as briefly described in Section 1.6.

Gibbs sampling

We sample all parameters of the model from their corresponding conditional

posterior distributions one at the time. We repeat this cycle of samples enough

times for the model to mix; this is usually known as the “burn-in” period. Then,

we keep sampling for a specified number of iterations in order to summarize the

distributions of the parameters of interest (“collection” period).
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Variational Bayes

Instead of sampling from the parameters of the model, we introduce a fully

factorized approximation q(Θ|xn, yn) to the exact posterior p(Θ|xn, yn), for n =

1, . . . , N , where Θ = {ajk, λk, skn, ψj , ζjk, ξjk, φk, w, δk, hk, γn}, for j = 1, . . . , p

and k = 1, . . . ,K. Inference proceeds by repeatedly updating the moments of

the variational distributions until convergence is observed. In the case of local

conjugacy, the moments of the variational approximation match the moments of

the analytically computed conditional posteriors.

Conditional posteriors

In the remainder of this section we present the relevant conditional posteriors.

For reference, j = 1, . . . , p indexes variables (genes), n = 1, . . . , N indexes obser-

vations and k = 1, . . . ,K indexes factors.

Factor loadings

• Define X−k
jn = xjn −

∑K
l 6=k λlAjlsln, then Ajk|− ∼ N (µjk,Σjk), where

Σjk =

(

N
∑

n=1

ψjλ
2
ks

2
kn + ζ−1

jk

)−1

, µjk = Σjk

(

N
∑

n=1

ψjλksknX
−k
jn

)

.

• ζjk|− ∼ GIG
(

0, 2ξjk, A
2
jk

)

and ζ−1
jk |− ∼ GIG

(

0, A2
jk, 2ξjk

)

.

• ξjk|− ∼ Gamma (1, ζjk + φk).

• φk|− ∼ Gamma
(

1
2p+

1
2 , w +

∑p
j=1 ξjk

)

.

• w|− ∼ Gamma
(

1
2K + 1

2 , 1 +
∑K
k=1 φk

)

.

Factor scalings

• λk|− ∼ N
(

µk, σ
2
k

)

, where

σ2
k =





N
∑

n=1

p
∑

j=1

ψjA
2
jks

2
kn + τk





−1

, µk = σ2
k





N
∑

n=1

p
∑

j=1

ψjAjksknX
−k
jn



 .

• δ1|− ∼ Gamma
(

â1, b̂1

)

, where

â1 = a1 +
K

2
, b̂1 = 1 +

1

2

K
∑

k=1

τ
(1)
k λ2k .

• δh|− ∼ Gamma
(

âh, b̂h

)

, where h ≥ 2 and

âh = a2 +
K − h+ 1

2
, b̂h = 1 +

1

2

K
∑

k=h

τ
(h)
k λ2k , τ

(h)
k =

k
∏

l=1,l 6=h

δl =
τk
δh
.
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Noise variance

• ψj |− ∼ Gamma(gj , hj), where

gj = g0 +
N

2
, hj = h0 +

1

2

N
∑

n=1

(

xjn −A⊤
j Λsn

)2
.

When utilizing various classifiers considered, we have different update equations

for S and h, factor scores and classifier coefficients, respectively.

Max-margin classifier

• Define Tkn = 1−
∑

l 6=k ynslnhl, then skn|− ∼ N (µkn,Σkn), where

Σkn =





p
∑

j=1

ψjλ
2
kA

2
jk + 1 +

h2k
γn





−1

,

µkn = Σkn





p
∑

j=1

ψjλkAjkX
−k
jn + (1 + Tknγ

−1
n )ynhk



 .

• hk|− ∼ N
(

µk, σ
2
k

)

, where

σ2
k =

(

N
∑

n=1

s2kn
γn

+ ω−1
k

)−1

, µk = σ2
k

(

N
∑

n=1

(1 + Tknγ
−1
n )ynskn

)

.

• γ−1
n |− ∼ IG

(

|1− ynh
⊤sn|

−1, 1
)

Logistic regression

• Define Tkn = γ−1
n (yn − 1

2 )−
∑

l 6=k slnhl, then skn|− ∼ N (µkn,Σkn), where

Σkn =





p
∑

j=1

ψjλ
2
kA

2
jk + 1 + γnh

2
k





−1

,

µkn = Σkn





p
∑

j=1

ψjλkAjkX
−k
jn + γnhkTkn



 .

• hk|− ∼ N
(

µk, σ
2
k

)

, where

σ2
k =

(

N
∑

n=1

γns
2
kn + ω−1

k

)−1

, µk = σ2
k

(

N
∑

n=1

γnsknTkn

)

.

• γn|− ∼ PG
(

1,h⊤sn
)
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Probit regression

• Define Tkn = γn −
∑

l 6=k slnhl, then skn|− ∼ N (µkn,Σkn), where

Σkn =





p
∑

j=1

ψjλ
2
kA

2
jk + 1 + h2k





−1

,

µkn = Σkn





p
∑

j=1

ψjλkAjkX
−k
jn + hkTkn



 .

• hk|− ∼ N
(

µk, σ
2
k

)

, where

σ2
k =

(

N
∑

n=1

s2kn + ω−1
k

)−1

, µk = σ2
k

(

N
∑

n=1

Tknskn

)

.

• γn, where

γn|yn = 1,− ∼ N (h⊤sn, 1)I(γn ≥ 0) ,

γn|yn = −1,− ∼ N (h⊤sn, 1)I(γn < 0) .



References

[1]C. M. Carvalho, J. Chang, J. E. Lucas, J. R. Nevins, Q. Wang, and M. West, “High-

dimensional sparse factor modeling: applications in gene expression genomics,” Jour-

nal of the American Statistical Association, vol. 103, no. 484, pp. 1438–1456, 2008.

[2]J. Lucas, C. Carvalho, and M. West, “A Bayesian analysis strategy for cross-study

translation of gene expression biomarkers,” Statistical Applications in Genetics and

Molecular Biology, vol. 8, no. 1, pp. 1–26, 2009.

[3]T. Speed, Statistical analysis of gene expression microarray data. CRC Press, 2003.

[4]S. Dudoit, J. Fridlyand, and T. P. Speed, “Comparison of discrimination methods

for the classification of tumors using gene expression data,” Journal of the American

Statistical Association, vol. 97, no. 457, pp. 77–87, 2002.

[5]I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene selection for cancer clas-

sification using support vector machines,” Machine Learning, vol. 46, pp. 389–422,

2002.

[6]I. Jolliffe, Principal component analysis. Wiley Online Library, 2005.

[7]D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix factorization,” in

Advances in Neural Information Processing Systems, 2001.

[8]A. Hyvärinen, J. Karhunen, and E. Oja, Independent component analysis. John

Wiley & Sons, 2004.

[9]L. Carin, J. L. Alfred Hero III, D. Dunson, M. Chen, R. Heñao, A. Tibau-Puig,
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