Adversarial Domain Adaptation for Machine Reading Comprehension

Motivation & Contribution

- **Motivation**
 - Recent success in MRC relies on large-scale annotated in-domain data (e.g., SQuAD)
 - Directly adapting models from source domain to low-resource target domain performs poorly due to domain shift

- **Contribution**
 - Unsupervised Domain Adaptation by generating pseudo data on target domain and learning domain-invariant representations through adversarial learning

T-SNE plot of encoded feature representations

Without domain adaptation

With domain adaptation

AdaMRC Framework

- **Question Generator (QG):** using passage and answer (extracted by NER) as input for generating pseudo questions in the target domain
- **Encoder & Decoder:** source domain and target domain share the same encoder & decoder (i.e., MRC Module)
- **Discriminator:** an MLP as domain classifier. A gradient reverse layer is used for gradient backpropagation

Training Algorithm

Algorithm 1 AdaMRC training procedure.

1. **Input:** source domain labeled data \(S = \{p^s, q^s, a^s\} \), target domain unlabeled data \(T = \{p^t\} \)
2. Train the MRC model \(\theta^S = (\theta^p, \theta^q) \) on source domain \(S \)
3. Train the QG model \(\theta^{QG} \) on source domain \(S \)
4. Generate \(T_{gen} = \{p^t, q^t, a^t\} \) using the QG model
5. Initialize \(\theta = (\theta^p, \theta^q, \theta^t) \) with \(\theta^p \)
6. for epoch \(< 1 \) to \(\theta^{epochs} \) do
7. Optimize \(\theta \) on \(S \cup T_{gen} \). Each minibatch is composed with \(k_s \) samples from \(S \) and \(k_t \) samples from \(T_{gen} \)
8. **end for**
9. **Output:** Model with the best performance on the target development set \(\theta^* \)

Experimental Results

<table>
<thead>
<tr>
<th>Method</th>
<th>EM/F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQuAD + NewsQA</td>
<td>36.68/52.79</td>
</tr>
<tr>
<td>AdaMRC + SQuAD</td>
<td>38.46/54.20</td>
</tr>
<tr>
<td>AdaMRC + SQuAD + GT questions</td>
<td>39.37/54.63</td>
</tr>
<tr>
<td>NewsQA + SQuAD</td>
<td>56.83/68.62</td>
</tr>
<tr>
<td>AdaMRC + SQuAD</td>
<td>58.20/69.75</td>
</tr>
<tr>
<td>AdaMRC + SQuAD + GT questions</td>
<td>58.82/70.14</td>
</tr>
<tr>
<td>MS MARCO (v1) + SQuAD</td>
<td>13.06/25.80</td>
</tr>
<tr>
<td>AdaMRC + MS MARCO (v1) + SQuAD</td>
<td>14.09/26.09</td>
</tr>
<tr>
<td>AdaMRC + MS MARCO (v1) + SQuAD + GT questions</td>
<td>15.59/26.40</td>
</tr>
<tr>
<td>SQuAD</td>
<td>27.06/40.07</td>
</tr>
<tr>
<td>AdaMRC + SQuAD</td>
<td>27.92/41.47</td>
</tr>
</tbody>
</table>

Dataset Domain

- SQuAD (v1.1) Wiki
- NewsQA News
- MS MARCO (v1) Web

Method

- **Main results are based on Stochastic Answer Network (SAN)**
- AdaMRC consistently improves performance over baselines
- Direct data augmentation and fine-tuning (SynNet) hurts performance
- Question generation is effective (margin with "AdaMRC with GT questions" is relatively small)
- Generalizable to other datasets and other MRC models with consistent performance gain

With pre-trained language models

<table>
<thead>
<tr>
<th>Method</th>
<th>EM/F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>AdaMRC</td>
<td>38.46/54.20</td>
</tr>
<tr>
<td>AdaMRC + SQuAD</td>
<td>40.96/56.25</td>
</tr>
<tr>
<td>AdaMRC + SQuAD + GT questions</td>
<td>42.00/58.71</td>
</tr>
<tr>
<td>AdaMRC + BERT-base</td>
<td>42.59/59.25</td>
</tr>
</tbody>
</table>

Can be extended to semi-supervised setting

- **Ratio (%Labeled data)**
 - 0%: 36.68/52.79
 - 5%: 47.61/62.69
 - 10%: 48.66/63.32
 - 20%: 50.75/64.80
 - 50%: 53.24/67.30
 - 100%: 56.48/69.14