

# Large-Scale Adversarial Training for Vision-and-Language Representation Learning

Zhe Gan, Yen-Chun Chen, Linjie Li, Chen Zhu, Yu Cheng, Jingjing Liu



#### Image-Text Pre-training

• Tremendous progress has been made for multimodal pre-training



#### Recap on UNITER

• Pre-training a large-scale Transformer for universal V+L representation learning



# What's Next?

- Aggressive finetuning often falls into the overfitting trap in existing multimodal pre-training methods
- Adversarial training (FreeLB) has shown great potential in improving the generalization ability of BERT
- Beyond FreeLB:
  - How about pre-training?
  - How about image modality?
  - How about AT algorithm itself?

FreeLB: Enhanced Adversarial Training for Natural Language Understanding, ICLR 2020

# VILLA: Vision-and-Language Large-scale Adversarial Training



# Preliminary: What's Adversarial Attack?

• Neural Networks are prone to label-preserving adversarial examples



(b) Example for ( $WP is \rightarrow WP's$ )

(c) Example for  $(? \rightarrow ??)$ 

[1] Explaining and harnessing adversarial examples. arXiv:1412.6572[2] Semantically equivalent adversarial rules for debugging nlp models. ACL (2018)

# Preliminary: What's Adversarial Training (AT)?

• A min-max game to harness adversarial examples



- Use adversarial examples as additional training samples
  - On one hand, we try to find perturbations that maximize the empirical risk
  - On the other hand, the model tries to make correct predictions on adversarial examples
- What doesn't kill you makes you stronger!

## What's Our Recipe?

- Ingredient #1: Adversarial pre-training + finetuning
- Ingredient #2: Perturbations in the embedding space
- Ingredient #3: Enhanced adversarial training algorithm



# #1: Adversarial Pre-training + Finetuning

• Pre-training and finetuning are inherently corelated



- <u>MLM during pre-training (masking out an object)</u>: [CLS] A [MASK] lying on the grass next to a frisbee [SEP]
- <u>VQA during finetuning (asking about an object)</u>: What animal is lying on the grass?

• Pre-training and finetuning share the same mathematical formulation

$$\min_{\boldsymbol{\theta}} \mathbb{E}_{(\boldsymbol{x}_{img}, \boldsymbol{x}_{txt}, \boldsymbol{y}) \sim \mathcal{D}} [L(f_{\boldsymbol{\theta}}(\boldsymbol{x}_{img}, \boldsymbol{x}_{txt}), \boldsymbol{y})].$$

# #2: Perturbations in the Embedding Space

- For image, robustness is often at odds with generalization
  - Generalization: Accuracy on clean data
  - <u>Robustness</u>: Accuracy on adversarial examples



• To boost performance on clean data, we propose to add perturbation in the feature space instead of pixel space

# #2: Perturbations in the Embedding Space

- For text, generating actual adversarial examples is difficult
  - An adversarial example should *preserve the semantics* as context is important

Original: He has a natural gift for writing scripts.
Adversarial: He has a natural talent for writing scripts.
Adversarial: He has a natural present for writing scripts.

- Use back-translation scores to filter out invalid adversaries: <u>expensive</u>
- Searching for semantically equivalent adversarial rules: <u>heuristic</u>
- Since we only care about the *end results* of adversarial training, we add perturbations in the embedding space directly

<sup>[1]</sup> Semantically Equivalent Adversarial Rules for Debugging NLP Models, ACL 2018.[2] Robust Neural Machine Translation with Doubly Adversarial Inputs, ACL 2019.

• Training objective:

$$\min_{\boldsymbol{\theta}} \mathbb{E}_{(\boldsymbol{x}_{img}, \boldsymbol{x}_{txt}, \boldsymbol{y}) \sim \mathcal{D}} \Big[ \mathcal{L}_{std}(\boldsymbol{\theta}) + \mathcal{R}_{at}(\boldsymbol{\theta}) + \alpha \cdot \mathcal{R}_{kl}(\boldsymbol{\theta}) \Big]$$

• Cross-entropy loss on clean data:

$$\mathcal{L}_{std}(\boldsymbol{\theta}) = L(f_{\boldsymbol{\theta}}(\boldsymbol{x}_{img}, \boldsymbol{x}_{txt}), \boldsymbol{y})$$



A [MASK] lying on the grass next to a frisbee



• Training objective:

 $\min_{\boldsymbol{\theta}} \mathbb{E}_{(\boldsymbol{x}_{img}, \boldsymbol{x}_{txt}, \boldsymbol{y}) \sim \mathcal{D}} \Big[ \mathcal{L}_{std}(\boldsymbol{\theta}) + \mathcal{R}_{at}(\boldsymbol{\theta}) + \alpha \cdot \mathcal{R}_{kl}(\boldsymbol{\theta}) \Big]$ 

A [MASK] lying on the grass next to a frisbee

Cross-entropy loss on adversarial embeddings:

 $\mathcal{R}_{at}(\boldsymbol{\theta}) = \max_{||\boldsymbol{\delta}_{img}|| \leq \epsilon} L(f_{\boldsymbol{\theta}}(\boldsymbol{x}_{img} + \boldsymbol{\delta}_{img}, \boldsymbol{x}_{txt}), \boldsymbol{y}) + \max_{||\boldsymbol{\delta}_{txt}|| \leq \epsilon} L(f_{\boldsymbol{\theta}}(\boldsymbol{x}_{img}, \boldsymbol{x}_{txt} + \boldsymbol{\delta}_{txt}), \boldsymbol{y})$ 

• A [MASK] lying on the grass next to a frisbee

🗸 dog



• Training objective:

$$\min_{\boldsymbol{\theta}} \mathbb{E}_{(\boldsymbol{x}_{img}, \boldsymbol{x}_{txt}, \boldsymbol{y}) \sim \mathcal{D}} \Big[ \mathcal{L}_{std}(\boldsymbol{\theta}) + \mathcal{R}_{at}(\boldsymbol{\theta}) + \alpha \cdot \mathcal{R}_{kl}(\boldsymbol{\theta}) \Big]$$

• KL-divergence loss for fine-grained adversarial regularization

$$\begin{aligned} \mathcal{R}_{kl}(\boldsymbol{\theta}) &= \max_{||\boldsymbol{\delta}_{img}|| \leq \epsilon} L_{kl}(f_{\boldsymbol{\theta}}(\boldsymbol{x}_{img} + \boldsymbol{\delta}_{img}, \boldsymbol{x}_{txt}), f_{\boldsymbol{\theta}}(\boldsymbol{x}_{img}, \boldsymbol{x}_{txt})) \\ &+ \max_{||\boldsymbol{\delta}_{txt}|| \leq \epsilon} L_{kl}(f_{\boldsymbol{\theta}}(\boldsymbol{x}_{img}, \boldsymbol{x}_{txt} + \boldsymbol{\delta}_{txt}), f_{\boldsymbol{\theta}}(\boldsymbol{x}_{img}, \boldsymbol{x}_{txt})), \end{aligned}$$

$$\begin{aligned} & \text{where} \quad L_{kl}(p, q) = \mathrm{KL}(p||q) + \mathrm{KL}(q||p), \end{aligned}$$

• Not only label-preserving, but the confidence level of the prediction between clean data and adversarial examples should also be close



#### Enable AT for large-scale training and promote diverse adversaries

Algorithm 1 "Free" Multi-modal Adversarial Training used in VILLA.

**Require:** Training samples  $\mathcal{D} = \{(x_{imq}, x_{txt}, y)\}$ , perturbation bound  $\epsilon$ , learning rate  $\tau$ , ascent steps K, ascent step size  $\alpha$ 1: Initialize  $\theta$ 2: **for** epoch =  $1 ... N_{ep}$  **do** for minibatch  $B \subset X$  do 3:  $\boldsymbol{\delta}_0 \leftarrow \frac{1}{\sqrt{Ns}} U(-\epsilon,\epsilon), \ \boldsymbol{g}_0 \leftarrow 0$ 4: for t = 1 ... K do 5: Accumulate the parameter Accumulate gradient of parameters  $\theta$  given  $\delta_{img,t-1}$  and  $\delta_{txt,t-1}$ 6: gradient for "free"  $\begin{array}{c} \boldsymbol{g}_t \leftarrow \boldsymbol{g}_{t-1} + \frac{1}{K} \mathbb{E}_{(\boldsymbol{x}_{img}, \boldsymbol{x}_{txt}, \boldsymbol{y}) \in B} [\nabla_{\boldsymbol{\theta}} (\mathcal{L}_{std}(\boldsymbol{\theta}) + \mathcal{R}_{at}(\boldsymbol{\theta}) + \mathcal{R}_{kl}(\boldsymbol{\theta}))] \\ \text{Update the perturbation } \boldsymbol{\delta}_{img} \text{ and } \boldsymbol{\delta}_{txt} \text{ via gradient ascend} \end{array}$ 7: 8:  $ilde{m{y}} = f_{m{ heta}}(m{x}_{ima},m{x}_{txt})$ 9: **Perturbation update**  $\boldsymbol{g}_{img} \leftarrow \nabla_{\boldsymbol{\delta}_{img}} \left[ L(f_{\boldsymbol{\theta}}(\boldsymbol{x}_{img} + \boldsymbol{\delta}_{img}, \boldsymbol{x}_{txt}), \boldsymbol{y}) + L_{kl}(f_{\boldsymbol{\theta}}(\boldsymbol{x}_{img} + \boldsymbol{\delta}_{img}, \boldsymbol{x}_{txt}), \tilde{\boldsymbol{y}}) \right]$ 10: via PGD (Projected  $\boldsymbol{\delta}_{img,t} \leftarrow \Pi_{\|\boldsymbol{\delta}_{img}\|_F \leq \epsilon} (\boldsymbol{\delta}_{img,t-1} + \alpha \cdot \boldsymbol{g}_{img} / \|\boldsymbol{g}_{img}\|_F)$ 11: **Gradient Descent**)  $\boldsymbol{g}_{txt} \leftarrow \nabla_{\boldsymbol{\delta}_{txt}} \left[ L(f_{\boldsymbol{\theta}}(\boldsymbol{x}_{img}, \boldsymbol{x}_{txt} + \boldsymbol{\delta}_{txt}), \boldsymbol{y}) + L_{kl}(f_{\boldsymbol{\theta}}(\boldsymbol{x}_{img}, \boldsymbol{x}_{txt} + \boldsymbol{\delta}_{txt}), \tilde{\boldsymbol{y}}) \right]$ 12:  $\boldsymbol{\delta}_{txt,t} \leftarrow \Pi_{\|\boldsymbol{\delta}_{txt}\|_{F} \leq \epsilon} (\boldsymbol{\delta}_{txt,t-1} + \alpha \cdot \boldsymbol{g}_{txt} / \|\boldsymbol{g}_{txt}\|_{F})$ 13: 14: end for Parameter update via SGD  $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \tau \boldsymbol{g}_{K}$ 15: end for 16: (Stochastic Gradient Descent) 17: end for

#### Results (VQA, VCR, NLVR2, SNLI-VE)

- Established new state of the art on all the tasks considered
- Gain: +0.85 on VQA, +2.9 on VCR, +1.49 on NLVR2, +0.64 on SNLI-VE

| Method                        | VQA      |          |              | VCR                | NLVR <sup>2</sup>  |              | SNLI-VE |       |       |
|-------------------------------|----------|----------|--------------|--------------------|--------------------|--------------|---------|-------|-------|
|                               | test-dev | test-std | Q→A          | $QA \rightarrow R$ | $Q \rightarrow AR$ | dev          | test-P  | val   | test  |
| ViLBERT                       | 70.55    | 70.92    | 72.42 (73.3) | 74.47 (74.6)       | 54.04 (54.8)       | -            | -       | -     | -     |
| VisualBERT                    | 70.80    | 71.00    | 70.8 (71.6)  | 73.2 (73.2)        | 52.2 (52.4)        | 67.4         | 67.0    | -     | -     |
| LXMERT                        | 72.42    | 72.54    | -            | _                  | -                  | 74.90        | 74.50   | -     | -     |
| Unicoder-VL                   | -        | -        | 72.6 (73.4)  | 74.5 (74.4)        | 54.4 (54.9)        | -            | -       | -     | -     |
| 12-in-1                       | 73.15    | -        | -            | _                  | -                  | -            | 78.87   | -     | 76.95 |
| VL-BERT <sub>BASE</sub>       | 71.16    | -        | 73.8 (-)     | 74.4 (-)           | 55.2 (-)           | -            | -       | -     | -     |
| Oscar <sub>BASE</sub>         | 73.16    | 73.44    | -            | -                  | -                  | 78.07        | 78.36   | -     | -     |
| <b>UNITER</b> <sub>BASE</sub> | 72.70    | 72.91    | 74.56 (75.0) | 77.03 (77.2)       | 57.76 (58.2)       | 77.18        | 77.85   | 78.59 | 78.28 |
| VILLA <sub>BASE</sub>         | 73.59    | 73.67    | 75.54 (76.4) | 78.78 (79.1)       | 59.75 (60.6)       | 78.39        | 79.30   | 79.47 | 79.03 |
| VL-BERT <sub>LARGE</sub>      | 71.79    | 72.22    | 75.5 (75.8)  | 77.9 (78.4)        | 58.9 (59.7)        | -            | -       | -     | -     |
| Oscar <sub>LARGE</sub>        | 73.61    | 73.82    | -            | -                  |                    | 79.12        | 80.37   | -     | -     |
| <b>UNITER</b> LARGE           | 73.82    | 74.02    | 77.22 (77.3) | 80.49 (80.8)       | 62.59 (62.8)       | 79.12        | 79.98   | 79.39 | 79.38 |
| VILLALARGE                    | 74.69    | 74.87    | 78.45 (78.9) | 82.57 (82.8)       | 65.18 (65.7)       | <b>79.76</b> | 81.47   | 80.18 | 80.02 |

(a) Results on VQA, VCR, NLVR<sup>2</sup>, and SNLI-VE.

#### Results (ITR, RE)

• Gain: +1.52/+0.60 on Flickr30k IR & TR (R@1), and +0.99 on RE

| Method                   |       | RefCOCO+ |       |                  |           |           |       |       | RefCOCO |                  |           |              |  |  |
|--------------------------|-------|----------|-------|------------------|-----------|-----------|-------|-------|---------|------------------|-----------|--------------|--|--|
|                          | val   | testA    | testB | $\mathrm{val}^d$ | $testA^d$ | $testB^d$ | val   | testA | testB   | $\mathrm{val}^d$ | $testA^d$ | $testB^d$    |  |  |
| ViLBERT                  | -     | -        | -     | 72.34            | 78.52     | 62.61     | -     | -     | -       | -                | -         | -            |  |  |
| VL-BERT <sub>BASE</sub>  | 79.88 | 82.40    | 75.01 | 71.60            | 77.72     | 60.99     | -     | -     | -       | -                | -         | -            |  |  |
| <b>UNITER</b> BASE       | 83.66 | 86.19    | 78.89 | 75.31            | 81.30     | 65.58     | 91.64 | 92.26 | 90.46   | 81.24            | 86.48     | 73.94        |  |  |
| VILLABASE                | 84.26 | 86.95    | 79.22 | 76.05            | 81.65     | 65.70     | 91.93 | 92.79 | 91.38   | 81.65            | 87.40     | 74.48        |  |  |
| VL-BERT <sub>LARGE</sub> | 80.31 | 83.62    | 75.45 | 72.59            | 78.57     | 62.30     | -     | -     | -       | -                | -         | -            |  |  |
| UNITERLARGE              | 84.25 | 86.34    | 79.75 | 75.90            | 81.45     | 66.70     | 91.84 | 92.65 | 91.19   | 81.41            | 87.04     | 74.17        |  |  |
| VILLALARGE               | 84.40 | 86.22    | 80.00 | 76.17            | 81.54     | 66.84     | 92.58 | 92.96 | 91.62   | 82.39            | 87.48     | <b>74.84</b> |  |  |

(b) Results on RefCOCO+ and RefCOCO. The superscript d denotes evaluation using detected proposals.

| Method                |       | RefC         | OCOg             |          | F           | lickr30k | IR          | F           | Flickr30k TR |             |  |  |
|-----------------------|-------|--------------|------------------|----------|-------------|----------|-------------|-------------|--------------|-------------|--|--|
|                       | val   | test         | $\mathrm{val}^d$ | $test^d$ | <b>R@</b> 1 | R@5      | <b>R@10</b> | <b>R@</b> 1 | R@5          | <b>R@10</b> |  |  |
| Vilbert               | -     | -            | -                | -        | 58.20       | 84.90    | 91.52       | -           | -            | -           |  |  |
| Unicoder-VL           | -     | -            | -                | -        | 71.50       | 90.90    | 94.90       | 86.20       | 96.30        | 99.00       |  |  |
| <b>UNITER</b> BASE    | 86.52 | 86.52        | 74.31            | 74.51    | 72.52       | 92.36    | 96.08       | 85.90       | 97.10        | 98.80       |  |  |
| VILLA <sub>BASE</sub> | 88.13 | 88.03        | 75.90            | 75.93    | 74.74       | 92.86    | 95.82       | 86.60       | 97.90        | 99.20       |  |  |
| UNITERLARGE           | 87.85 | 87.73        | 74.86            | 75.77    | 75.56       | 94.08    | 96.76       | 87.30       | 98.00        | 99.20       |  |  |
| VILLALARGE            | 88.42 | <b>88.97</b> | 76.18            | 76.71    | 76.26       | 94.24    | 96.84       | 87.90       | 97.50        | 98.80       |  |  |

(c) Results on RefCOCOg and Flickr30k Image Retrieval (IR) and Text Retrieval (TR).

#### A Closer Look at VQA



# Pretraining vs. Finetuning

• Both adversarial pre-training and finetuning contribute to performance boost

| Method          | VQA      | VCR (val)         |                    |                    | NLVR <sup>2</sup> | VE    | Flickr30k IR |       |       | RefC      | COCO      | Ave.  | `<br>\  |
|-----------------|----------|-------------------|--------------------|--------------------|-------------------|-------|--------------|-------|-------|-----------|-----------|-------|---------|
|                 | test-dev | $Q \rightarrow A$ | $QA \rightarrow R$ | $Q \rightarrow AR$ | test-P            | test  | <b>R@</b> 1  | R@5   | R@10  | $testA^d$ | $testB^d$ |       |         |
| UNITER (reimp.) | 72.70    | 74.24             | 76.93              | 57.31              | 77.85             | 78.28 | 72.52        | 92.36 | 96.08 | 86.48     | 73.94     | 78.06 | +0.51   |
| VILLA-pre       | 73.03    | 74.76             | 77.04              | 57.82              | 78.44             | 78.43 | 73.76        | 93.02 | 96.28 | 87.34     | 74.35     | 78.57 | دە 🗤    |
| VILLA-fine      | 73.29    | 75.18             | 78.29              | 59.08              | 78.84             | 78.86 | 73.46        | 92.98 | 96.26 | 87.17     | 74.31     | 78.88 | 70.02   |
| VILLA           | 73.59    | 75.54             | 78.78              | 59.75              | 79.30             | 79.03 | 74.74        | 92.86 | 95.82 | 87.40     | 74.48     | 79.21 | ) +1.15 |



#### VILLA vs. FreeLB

- Adversarial training on image or text modality alone is already effective
  - Most existing work shows that adversarial training for images cannot improve accuracy
- VILLA is consistently better than FreeLB

| Method                        | VQA      | VCR (val)                                                      |              |       | — Method                         | VQA                 | VCR (val)          |                    |       |
|-------------------------------|----------|----------------------------------------------------------------|--------------|-------|----------------------------------|---------------------|--------------------|--------------------|-------|
| iviounou.                     | test-dev | test-dev $Q \rightarrow A  QA \rightarrow R  Q \rightarrow AR$ |              |       | test-dev                         | $Q {\rightarrow} A$ | $QA \rightarrow R$ | $Q \rightarrow AR$ |       |
| VILLA <sub>BASE</sub> (txt)   | 73.50    | 75.60                                                          | 78.70        | 59.67 | UNITER <sub>BASE</sub> (reimp.)  | 72.70               | 74.24              | 76.93              | 57.31 |
| VILLA <sub>BASE</sub> (img)   | 73.50    | 75.81                                                          | 78.43        | 59.68 | UNITER <sub>BASE</sub> +FreeLB   | 72.82               | 75.13              | 77.90              | 58.73 |
| VILLA <sub>BASE</sub> (both)  | 73.59    | 75.54                                                          | <b>78.78</b> | 59.75 | VILLA <sub>BASE</sub> -fine      | 73.29               | 75.49              | 78.34              | 59.30 |
| VILLA <sub>LARGE</sub> (txt)  | 74.55    | 78.08                                                          | 82.31        | 64.63 | UNITER <sub>LARGE</sub> (reimp.) | 73.82               | 76.70              | 80.61              | 62.15 |
| VILLA <sub>LARGE</sub> (img)  | 74.46    | 78.08                                                          | 82.28        | 64.51 | UNITER <sub>LARGE</sub> +FreeLB  | 73.87               | 77.19              | 81.44              | 63.24 |
| VILLA <sub>LARGE</sub> (both) | 74.69    | 78.45                                                          | 82.57        | 65.18 | VILLA <sub>LARGE</sub> -fine     | 74.32               | 77.75              | 82.10              | 63.99 |

(a) Image vs. Text Modality.

(b) FreeLB vs. VILLA.

# Generalizability of VILLA

• VILLA can be applied to any multimodal pre-training methods (e.g., LXMERT)

| Method          | VQA      |          | GQ       | QA       | NL    | $VR^2$ | Meta-Ave. | -     |
|-----------------|----------|----------|----------|----------|-------|--------|-----------|-------|
|                 | test-dev | test-std | test-dev | test-std | dev   | test-P |           |       |
| LXMERT          | 72.42    | 72.54    | 60.00    | 60.33    | 74.95 | 74.45  | 69.12     | -     |
| LXMERT (reimp.) | 72.50    | 72.52    | 59.92    | 60.28    | 74.72 | 74.75  | 69.12     |       |
| VILLA-fine      | 73.02    | 73.18    | 60.98    | 61.12    | 75.98 | 75.73  | 70.00     | +0.88 |

• Adversarial training as a regularizer



# **Probing Analysis**

• Probing the attention heads (12 layers, and 12 heads in each layer)



• VILLA captures richer visual coreference and visual relation knowledge

| Model                         |       | Visual   | Coreferenc | e (Flickr30k) |          | Visual Relation (Visual Genome) |             |         |         |          |       |
|-------------------------------|-------|----------|------------|---------------|----------|---------------------------------|-------------|---------|---------|----------|-------|
|                               | scene | clothing | animals    | instruments   | vehicles | on                              | standing in | wearing | holding | covering | 1100  |
| <b>UNITER</b> <sub>BASE</sub> | 0.151 | 0.157    | 0.285      | 0.244         | 0.194    | 0.154                           | 0.107       | 0.311   | 0.200   | 0.151    | 0.195 |
| VILLA <sub>BASE</sub>         | 0.169 | 0.185    | 0.299      | 0.263         | 0.202    | 0.201                           | 0.120       | 0.353   | 0.241   | 0.192    | 0.223 |

# Visualization (Text-to-Image Attention)

• VILLA learns more accurate and sharper attention maps than UNITER



A group of people are in a dirt mountain, one person is talking on the phone, one is taking a picture and one is jumping in the air.



# Robustness to Paraphrases

- UNITER has already lifted up the performance by a large margin
- VILLA facilitates further performance boost

| Data split | MUTAN | BUTD  | BUTD+CC | Pythia | Pythia+CC | BAN   | BAN+CC | UNITER | VILLA |
|------------|-------|-------|---------|--------|-----------|-------|--------|--------|-------|
| Original   | 59.08 | 61.51 | 62.44   | 64.08  | 64.52     | 64.97 | 65.87  | 70.35  | 71.27 |
| Rephrasing | 46.87 | 51.22 | 52.58   | 54.20  | 55.65     | 55.87 | 56.59  | 64.56  | 65.35 |

Table 6: Results on VQA-Rephrasings. Both UNITER and VILLA use the base model size. Baseline results are copied from [57].

# Takeaway Message

- VILLA is the first known effort that proposes adversarial training for V+L representation learning
- Code is available at

https://github.com/zhegan27/VILLA

• Adversarial robustness of V+L models could be interesting future work

