Introduction

The main contribution of this paper:

(1) A new VAE-based method for deep deconvolutional learning, with a CNN employed within
a recognition model (encoder) for the posterior distribution of the parameters of the image
generative model (decoder);

(1) Demonstration that the fast CNN-based encoder applied to the DGDN vyields accuracy
comparable to that provided by Gibbs sampling and MCEM based inference, while being
much faster at test time;

(iil) Applied semi-supervised CNN classification to large-scale image datasets;

(iv) Extensive experiments on image-caption modeling, in which we demonstrate the advan-

tages of jointly learning the image features and caption model.

model

Image Decoder: Deep Deconvolutional Generative Model
Consider N images {X™IN_. with XM g RN<NyxNe.

Layer 2: S(m2) — 2152221 Dk22) 4 §(nka2) (1)
Unpool: S < unpool(S™2) (2)
Layer 1. Sl — lef::] D1 4 ik, T) (3)
Data Generation: XM < V(S o) (4)

Image Encoder: Deep CNN

While the two-layer decoder in (1)-(4) is top-down, starting at layer 2, the encoder is bottom-
up, starting at layer 1 with image X™):

Layer 1: cmknl) — xmy plall o =1 ... K (5)

Pool: c™Y < pool(CM™M) (6)

Layer 2: cka2) — gl g Fl?) - =1 ... K, (7)

Code Generation: Sqp~N (uq)(é(“’z)), diag(oﬁ)(é(”’z)))) (8)

u¢(é(“>2)) and O'%b(é(n’z)) in (8) is obtained by feeding C™?) to an MLP.

Stochastic Unpooling/Pooling

Stochastic Unpooling for Encoder: Sikil) g par- (n Kyl 4 1)
x kot
i,

/.08 fi

\
/ \
\

i,
zero element, with the value defined in X(™k12) gnd ey
. o [ T
location defined by Zi(n’k“” c {0, 1}P*Pv which is a vec- 0 1 KR \
|

) N
~N

tor of all zeros, and a single one \\\ Ve
zi7 Y~ Mult(1,1/(papy)y -+, 1/(papy)) (9) Lo Los f s

Stochastic Pooling for Decoder: Ci(g’k"”

block (i,j) of C™¥*1) Using a multi-layered perceptron (MLP), this is mapped to the

titioned into contiguous spatial pooling blocks. Each
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pooling block of S! is all-zeros except one non- 7 kD
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reflect the p,p, components in pooling

PxPy-dimensional real vector. The pooling vector is drawn:

nikl) _ gLp (Gl 2P C Mult(T; Softmax(n{"))  (10)
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Label and Captions

Bayesian SVM for labels: Given a label {,, € {1,..., C} associated with X'™, we design
C one-versus-all binary SVM classifiers, with y\¥ € {—1,1}. If €, = £ then y!¥ =1, and

yg) = —1 otherwise. The goal of the SVM is to find an f(s) that minimizes the objective
function
¥ Xy max(1 —ynf(sn), 0) + R(f(s)), (11)
which is equivalent to estimating the mode of the pseudo-posterior of 3
N
p(BIS,Y,v) o | | L(ynlsn, B,¥)P(BI), (12)
n=1
— max\ I— ! o0 n—Yn ! n 2
L(YnlSn, B,y) = e 2V mxlI7unbisn0) — [2 ﬁ%nexp( A S ) dAn. (13)

RNN for captions: The probability of a cpation Y™ = (y%n), e ,y(T:)) is defined as

T,
p(YMsn) =p(yiVisn) [ [yt iy, sn) (14)
t=2

P(yﬁn)lyi’?, Sn) is specified as softmax(VhJ(c“)), where hg“) is recursively updated through
hJ(t“) = H(W&%,h&%) and H/(-) is implemented with GRU.

Learning and Inference

Given an image X and associated label /caption Y, the variational lower bound is

Loap(X,Y) = E{Eq, sx)log py(YIs)]} + Eq,(s,zx)log pa(X, 8,2) —log qg (s, 2| X)]

where & is a tuning parameter that balances the two components of L o (X,Y). The

lower bound for the entire dataset is then:

jd>>oc,tl) — Z(X,Y)EDC £<I>,cx,tl)(X> Y)+ ZXEDuZ/{(IMX(X) (15)

where D, denotes the set of training images with associated captions, and D,, is the set of
training images that are uncaptioned (and unlabeled).

To optimize Jp op W-r-t. ¢, P and &, we utilize Monte Carlo integration to approximate
the expectation, Eq_ (s z1x), and stochastic gradient descent (SGD) for parameter optimiza-

tion. We use the variance reduction techniques in VAE and NVIL to compute the gradients.

Experimental Results

Table 1 : Classification error (%) and testing time (ms per image) on benchmarks.

MNIST | CIFAR-10 CIFAR-100 Caltech 101 Caltech 256 ImageNet 2012
Method | test | test | test test test |test test | test test test top-1|top-5 test
error | time |error time | error time| error | time | error | time | error | error |time
Gibbs 0.37 3.1 8.2110.4|34.33 10.4 12.87 50.4 29.50 52.3 | - - -
MCEM 045/ 0.8 19.04 1.1 3592 1.1 1351 8.8 |[30.13 89 379 16.1 144
VAE (Ours) 0.380.007/8.19  0.02/35.01/0.02/11.99| 0.3 29.33 0.3 38.2 15.7 1.0

Table 2 : Semi-supervised classification error (%) on MNIST. N is the number of labeled images per class.

Deep generative model Ladder network Our model

M1+TSVM & M1+M2 -full ["-conv E=0 &=N,/(Cp)
10 | 16.81 11.824+ 0.25/3.33 = 0.14/1.06 + 0.37 0.89+0.50 5.83 = 0.97| 1.49 £+ 0.36
60  6.16 | 5.724+ 0.05 2.59 +0.05 - 0.82 £ 0.17*%/2.19 £ 0.19 0.77 + 0.09
1000 5.38 | 4.24+ 0.07 | 2.40 +0.02 |0.84 £ 0.08 0.74 £ 0.10* 1.75 = 0.14 0.63 + 0.06
3000 3.45 | 3.494 0.04 2.18 £0.04 - 0.63 £ 0.02* 1.42 4+ 0.08 0.51 £ 0.04
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Table 3 : Image captioning results on Flickr8k, Flickr 30k and MS COCO datasets.

Method Flickr8k | Flickr30k COCO
B-4 'PPL B-4 PPL B-4 METEOR CIDEr PPL
VggNet+RNN 0.16/15.71/0.17) 18.83 |0.19  0.19 0.56 13.16
GoogleNet+RNN 0.16/15.71/0.17 18.77 |0.17  0.19 0.55 14.01
Our two step model 0.17/15.82/0.17 18.73 |0.18  0.20 0.58 13.46
Hard-Attention 021 - 10.20-16.17 0.25 0.23 - -
Our joint model 0.22115.24 0.22 026 0.22 0.89 11.57
Our joint model with ImageNet|0.2513.24/0.25 15.34 0.28| 0.24 0.90 11.14
Attributes-CNN+RNN 0.27/12.60/0.28 15.96 [0.31  0.26 0.94 10.49

Conclusions

A recognition model has been developed for the Deep Generative Deconvolutional Network
(DGDN). The model is learned using a variational autoencoder setup and achieved results

competitive with state-of-the-art methods on several tasks and novel semi-supervised results.
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