

Variational Autoencoder for Deep Learning of Images, Labels and Captions

Yunchen Pu[†], Zhe Gan[†], Ricardo Henao[†], Xin Yuan[‡], Chunyuan Li[†], Andrew Stevens[†] and Lawrence Carin[†] [†]Department of Electrical and Computer Engineering, Duke University; {yp42, zg27, r.henao, cl319, ajs104, lcarin}@duke.edu [‡]Nokia Bell Labs, Murray Hill; xyuan@bell-labs.com

Introduction

The main contribution of this paper:

(i) A new VAE-based method for deep deconvolutional learning, with a CNN employed within a recognition model (encoder) for the posterior distribution of the parameters of the image generative model (decoder);

(ii) Demonstration that the fast CNN-based encoder applied to the DGDN yields accuracy comparable to that provided by Gibbs sampling and MCEM based inference, while being much faster at test time;

(iii) Applied semi-supervised CNN classification to large-scale image datasets; (iv) Extensive experiments on image-caption modeling, in which we demonstrate the advantages of jointly learning the image features and caption model.

model

Image Decoder: Deep Deconvolutional Generative Model

Consider N images $\{\mathbf{X}^{(n)}\}_{n=1}^{N}$, with $\mathbf{X}^{(n)} \in \mathbb{R}^{N_{\chi} \times N_{y} \times N_{c}}$;

Layer 2:	$\tilde{\mathbf{S}}^{(n,2)} = \sum_{k_2=1}^{K_2} \mathbf{D}^{(k_2,2)} * \mathbf{S}^{(n,k_2,2)}$
Unpool:	$\mathbf{S}^{(n,1)} \sim unpool(\widetilde{\mathbf{S}}^{(n,2)})$
Layer 1:	$\tilde{\mathbf{S}}^{(n,1)} = \sum_{k_1=1}^{K_1} \mathbf{D}^{(k_1,1)} * \mathbf{S}^{(n,k_1,1)}$
Data Generation:	$\mathbf{X}^{(n)} \sim \mathcal{N}(\tilde{\mathbf{S}}^{(n,1)}, \boldsymbol{\alpha}_0^{-1}\mathbf{I})$

Image Encoder: Deep CNN

While the two-layer decoder in (1)-(4) is top-down, starting at layer 2, the encoder is bottomup, starting at layer 1 with image $\mathbf{X}^{(n)}$: $\tilde{\mathbf{C}}^{(n,k_1,1)} = \mathbf{X}^{(n)} *_s \mathbf{F}^{(k_1,1)}$, $k_1 = 1,...$ Layer 1: $\mathbf{C}^{(n,1)} \sim \mathsf{pool}(\tilde{\mathbf{C}}^{(n,1)})$ Pool: $\tilde{\mathbf{C}}^{(n,k_2,2)} = \mathbf{C}^{(n,1)} *_{s} \mathbf{F}^{(k_2,2)}$, $k_2 = 1,.$

Layer 2: $\boldsymbol{s}_n \sim \mathcal{N}\left(\boldsymbol{\mu}_{\boldsymbol{\Phi}}(\tilde{\mathbf{C}}^{(n,2)}), \mathsf{diag}(\boldsymbol{\sigma}_{\boldsymbol{\Phi}}^2(\tilde{\mathbf{C}}^{(n,2)}))\right)$ Code Generation: $\mu_{\Phi}(\tilde{\mathbf{C}}^{(n,2)})$ and $\sigma_{\Phi}^2(\tilde{\mathbf{C}}^{(n,2)})$ in (8) is obtained by feeding $\tilde{\mathbf{C}}^{(n,2)}$ to an MLP.

Stochastic Unpooling/Pooling

Stochastic Unpooling for Encoder: $S^{(n,k_1,1)}$ is partitioned into contiguous spatial pooling blocks. Each pooling block of $S^{(n,k_1,1)}$ is all-zeros except one nonzero element, with the value defined in $\mathbf{X}^{(n,k_1,2)}$ and location defined by $z_{i,i}^{(n,k_1,1)} \in \{0,1\}^{p_x p_y}$ which is a vector of all zeros, and a single one

 $z_{i,j}^{(n,k_1,1)} \sim Mult(1, 1/(p_x p_y), \dots, 1/(p_x p_y))$ (9)

Stochastic Pooling for Decoder: $\tilde{C}_{i,j}^{(n,k_1,1)}$ reflect the $p_x p_y$ components in pooling block (i, j) of $\tilde{\mathbf{C}}^{(n, k_1, 1)}$. Using a multi-layered perceptron (MLP), this is mapped to the $p_x p_y$ -dimensional real vector. The pooling vector is drawn:

$$\eta_{i,j}^{(n,k_1,1)} = \mathsf{MLP}(\tilde{\mathbf{C}}_{i,j}^{(n,k_1,1)}) \qquad z_{i,j}^{(n,k_1,1)} \sim \mathsf{Mult}(1;\mathsf{Softmax}(\eta_{i,j}^{(n,k_1,1)})) \qquad (10)$$

Image encoder: DGDN $p_{\alpha}(\mathbf{X}|\boldsymbol{z})$

Image Decoder: Deep CNN $q_{\phi}(\boldsymbol{z}|\mathbf{X})$

Label and Captions

Bayesian SVM for labels: Given a label $\ell_n \in \{1, \ldots, C\}$ associated with $\mathbf{X}^{(n)}$, we design C one-versus-all binary SVM classifiers, with $y_n^{(\ell)} \in \{-1, 1\}$. If $\ell_n = \ell$ then $y_n^{(\ell)} = 1$, and $y_n^{(l)} = -1$ otherwise. The goal of the SVM is to find an f(s) that minimizes the objective function

$$\gamma \sum_{n=1}^{N} \max(1 - y_n f(s_n), 0) + R(f(s)), \qquad (11)$$

which is equivalent to estimating the mode of the pseudo-posterior of β

$$p(\boldsymbol{\beta}|\mathbf{S}, \mathbf{y}, \boldsymbol{\gamma}) \propto \prod_{n=1}^{N} \mathcal{L}(y_n|s_n, \boldsymbol{\beta}, \boldsymbol{\gamma}) p(\boldsymbol{\beta}|\cdot),$$

 $\mathcal{L}(y_n|s_n, \boldsymbol{\beta}, \boldsymbol{\gamma}) = e^{-2\gamma \max(1-y_n \boldsymbol{\beta}^{\mathsf{T}} s_n, \mathbf{0})} = \int_0^{\infty} \frac{\sqrt{\gamma}}{\sqrt{2\pi\lambda_n}} \exp(-2\gamma \max(1-y_n \boldsymbol{\beta}^{\mathsf{T}} s_n, \mathbf{0})) d\mathbf{y}$

RNN for captions: The probability of a cpation $\mathbf{Y}^{(n)} = (\mathbf{y}_1^{(n)}, \dots, \mathbf{y}_{T_n}^{(n)})$ is defined as

$$p(\mathbf{Y}^{(n)}|\mathbf{s}_n) = p(\mathbf{y}_1^{(n)}|\mathbf{s}_n) \prod_{t=2}^{T_n} p(\mathbf{y}_t^{(n)}|\mathbf{y}_{< t}^{(n)}, \mathbf{s}_n)$$
(14)

 $p(\mathbf{y}_t^{(n)}|\mathbf{y}_{< t}^{(n)}, \mathbf{s}_n)$ is specified as softmax $(\mathbf{Vh}_t^{(n)})$, where $\mathbf{h}_t^{(n)}$ is recursively updated through $\mathbf{h}_{t}^{(n)} = \mathcal{H}(\mathbf{w}_{t-1}^{(n)}, \mathbf{h}_{t-1}^{(n)})$ and $\mathcal{H}(\cdot)$ is implemented with GRU.

Learning and Inference

Given an image ${f X}$ and associated label/caption ${f Y}$, the variational lower bound is $\mathcal{L}_{\Phi,\alpha,\Psi}(\mathbf{X},\mathbf{Y}) = \xi \{ \mathbb{E}_{q_{\Phi}(s|\mathbf{X})}[\log p_{\Psi}(\mathbf{Y}|s)] \} + \mathbb{E}_{q_{\Phi}(s,z|\mathbf{X})}[\log p_{\alpha}(\mathbf{X},s,z) - \log q_{\Phi}(s,z|\mathbf{X})] \}$ where ξ is a tuning parameter that balances the two components of $\mathcal{L}_{\Phi,\alpha,\Psi}(\mathbf{X},\mathbf{Y})$. The lower bound for the entire dataset is then:

$$\mathcal{T}_{\mathbf{\phi},\mathbf{\alpha},\mathbf{\psi}} = \sum_{(\mathbf{X},\mathbf{Y})\in\mathcal{D}_{c}} \mathcal{L}_{\mathbf{\phi},\mathbf{\alpha},\mathbf{\psi}}(\mathbf{X},\mathbf{Y}) + \mathcal{T}_{\mathbf{\phi},\mathbf{\alpha},\mathbf{\psi}}(\mathbf{X},\mathbf{Y})$$

where \mathcal{D}_{c} denotes the set of training images with associated captions, and \mathcal{D}_{u} is the set of training images that are uncaptioned (and unlabeled). To optimize $\mathcal{J}_{\Phi,\alpha,\psi}$ w.r.t. Φ, ψ and α , we utilize Monte Carlo integration to approximate the expectation, $\mathbb{E}_{q_{\phi}(s,z|X)}$, and stochastic gradient descent (SGD) for parameter optimization. We use the variance reduction techniques in VAE and NVIL to compute the gradients.

(1)	
(2)	
(3)	
(4)	

\ldots, K_1	(5)
	(6)
\ldots, K_2	(7)
	(8)

BSVM for Label $\rightarrow p_{\psi}(\boldsymbol{Y}|\boldsymbol{z})$ **RNN** for Caption Code z

$$\exp\left(-\frac{(1+\lambda_n-y_n\beta^T s_n)^2}{2\gamma^{-1}\lambda_n}\right)d\lambda_n.$$
 (13)

$\sum_{\mathbf{X}\in\mathcal{D}_{u}}$	$\mathcal{U}_{\mathbf{\phi}, \mathbf{\alpha}}(\mathbf{X})$	(15)

Experimental Results

	MN	IIST	CIFA	IFAR-10 CIF/		CIFAR-100 Caltech			h 101 Caltech 256			ImageNet 2012		
Method	test	test	test	test	test	test	test	test	test	test	top-1	top-5	test	
	error	time	error	time	error	time	error	time	error	time	error	error	time	
Gibbs	0.37	3.1	8.21	10.4	34.33	10.4	12.87	50.4	29.50	52.3	_	_	_	
MCEM	0.45	0.8	9.04	1.1	35.92	1.1	13.51	8.8	30.13	8.9	37.9	16.1	14.4	
VAE (Ours)	0.38	0.007	8.19	0.02	35.01	0.02	11.99	0.3	29.33	0.3	38.2	15.7	1.0	

N		Deep genera	ative model	Ladder	network	Our model			
IN		M1+TSVM	M1+M2	Γ-full	Γ-conv	$\xi = 0$	$\xi = N_x / (C\rho)$		
10	16.81	$11.82{\pm}~0.25$	3.33 ± 0.14	1.06 ± 0.37	0.89 ±0.50	5.83 ± 0.97	1.49 ± 0.36		
60	6.16	$5.72\pm$ 0.05	2.59 ± 0.05	-	$0.82\pm0.17^{*}$	2.19 ± 0.19	0.77 ± 0.09		
100	5.38	$4.24{\pm}~0.07$	2.40 ±0.02	0.84 ± 0.08	$0.74 \pm 0.10^{*}$	1.75 ± 0.14	0.63 ± 0.06		
300	3.45	3.49± 0.04	2.18 ±0.04	-	$0.63 \pm 0.02^{*}$	1.42 ± 0.08	0.51 ± 0.04		

Figure 1 : Semi-supervised classification accuracy on ImageNet 2012.

Table 3 : Image captioning results

Mathad	Flic	Flickr8k		Flickr30k		COCO				
Methou	B-4	\mathcal{PPL}	B-4	\mathcal{PPL}	B-4	METEOR	CIDEr	\mathcal{PPL}		
VggNet $+$ RNN	0.16	15.71	0.17	18.83	0.19	0.19	0.56	13.16		
$GoogLeNet{+}RNN$	0.16	15.71	0.17	18.77	0.17	0.19	0.55	14.01		
Our two step model	0.17	15.82	0.17	18.73	0.18	0.20	0.58	13.46		
Hard-Attention	0.21	-	0.20	- 16.17	0.25	0.23	-	-		
Our joint model	0.22	15.24	0.22		0.26	0.22	0.89	11.57		
Our joint model with ImageNet	0.25	13.24	0.25	15.34	0.28	0.24	0.90	11.14		
Attributes-CNN+RNN	0.27	12.60	0.28	15.96	0.31	0.26	0.94	10.49		
					1			1		

A recognition model has been developed for the Deep Generative Deconvolutional Network (DGDN). The model is learned using a variational autoencoder setup and achieved results competitive with state-of-the-art methods on several tasks and novel semi-supervised results.

Table 1 : Classification error (%) and testing time (ms per image) on benchmarks.

Table 2 : Semi-supervised classification error (%) on MNIST. N is the number of labeled images per class.

Figure 2 : Examples of generated caption from unseen images on ImageNet.

on Flickr8k, Flickr 30k and MS COCO datasets.

Conclusions