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Motivation & Contribution

1) Estimating a distribution over sentences from a corpus, then use it
to sample realistic-looking text.

MMD objective

@ Instead of using original GAN loss, we consider a moment matching
loss over CNN feature layer using maximum mean discrepancy

(MMD).
@ The MMD measures the mean squared difference of two sets of
samples over RKHS:

Lymp2 = |[Ex~x@(x) — Ey~y¢()/)|’%z

— :EXNX]Ex’NX[k(X: X/)]
+ By yEyry[k(y, y)] = 2ExxEyy[k(x, y)]:

2) Ameliorating mode-collapsing issue associated with standard GAN
training.

3) Discretization approximations for text modeling

Introductions

Generative adversarial network (GAN) aims to obtain the
equilibrium of the following optimization objective:

Loan =Egzp, log D(x) +E,p. log/l — D(G(2))]

[Ix—x']|°

e With a Gaussian kernel k(x, x") = exp(
MMD objective is can be perceived as minimizing all order of

Minimizing the Jenson-Shannon Divergence (JSD) between
moments of two empirical distributions.

the real data distribution and the synthetic data distribution.

Discretization approximation

@ Score-function-based approaches, such as the REINFORCE algorithm,
has very large variance of the gradient estimation.

TextGAN objective

We adopt a feature matching approach instead of vanilla

GAN objective. Specifically, we consider the objective , ,
@ We consider a Gu‘mbel—softmax approach to approximate argmax

Lc = Lymp:
Loan = Esslog D(s) + E,p, log[l — D(G(2))]

Lrecon = ||2 — szt

Y+ 1 = Wesoftmax(Vhi_1 ®L).

where © represents the element-wise product. Note that when

[ — oo, this approximation approaches argmax operation.

o Easier to train: G try to match the sentence feature “fingerprint”
rather than directly cheat D, which is more achievable.

o Enforce the generator to generate different sentence rather than a

single one.

o The blue reconstruction loss in (3) enforce the most representative

features for G is selected.

o The red mmd loss in (3) enforce the most challenging features for G is

selected.

Alternative objective

@ Problems: a minibatch (256) of data point is not densely sampled in

feature space with high dimension (900).

@ Alternative models:
e Mapping feature space to lower dimension

e Use accumulated batches, however kernel-based method is not

available anymore. Instead we use Jensen-Shannon divergence:

LG — tr(zs—lzf + zr—lzs) T (/J’s o Ur)T(Zs—l + zr—l)(/J’s o u’r)

e 2 and g are covariance and mean for the discriminative feature vector.

Results: empirical evaluation

Table: Sentences generated by textGAN.

_____________

a | we show the joint likelihood estimator ( in a large number of estimating
variables embedded on the subspace learning ) .

b | this problem achieves less interesting choices of convergence guarantees
on turing machine learning .

c | in hidden markov relational spaces , the random walk feature decomposition
is unique generalized parametric mappings.

i see those primitives specifying a deterministic probabilistic machine
learning algorithm .

e | i wanted in alone in a gene expression dataset which do n't form phantom
action values .

f | as opposite to a set of fuzzy modelling algorithm , pruning is performed
using a template representing network structures .
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Figure: LSTM generator (left) and CNN discriminator (right)
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Moment matching comparison
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Figure: Moment matching comparison. Left: expectations of latent features from
real vs. synthetic data. Right: elements of ;¢ vs. X .z, for real and synthetic

data, respectively.

Interpolation in latent space

textGAN

AE

A our methods apply novel approaches to solve modeling tasks .

- our methods apply novel approaches to solve

modeling .

our methods apply to train UNK models
involving complex .

- our methods apply two different approaches

to solve computing .

our methods solve use to train ) .

- our methods achieves some different ap-

proaches to solve computing .

our approach show UNK to models exist .

- our methods achieves the best expert struc-

ture detection .

that supervised algorithms show to UNK
speed .

- the methods have been different related tasks

that address algorithms to handle ) .

- the guy is the minimum of UNK .

that address versions to be used in .

- the guy is n't easy tonight .

| believe the means of this attempt to cope

- I believe the guy is n't smart okay?

I believe it 's we be used to get .

- I believe the guy is n't smart .

I believe it i 'm a way to belong .

| believe i 'm going to get out .

Quantitative comparison
Table: Quantitative results using BLEU-2,3,4 and KDE.

BLEU-4 BLEU-3 BLEU-2 KDE(nats)

AE 0.01+£0.01  0.11+£0.02  0.39£0.02 2727142

VAE 0.12+0.06  0.40£0.06  0.61£0.07 2025425
seqGAN 0.04+£0.04 0.30£0.08 0.67£0.04 2019453
textGAN(MM) 0.09+£0.04 0.42+£0.04 0.77£0.03 1823+50
textGAN(CM) 0.124+0.03  0.49£0.06 0.84£0.02 1686441
textGAN(MMD) 0.13+0.05 0.494+0.06 0.83+0.04 1688+38
textGAN(MMD-L)  0.11+0.05  0.524+0.07 0.85+0.04 1684+44

Conclusion

@ We introduced a novel approach for text generation using adversarial

training

@ We discussed several techniques to specify and train such a model.

@ We demonstrated that the proposed model delivers superior
performance compared to related approaches.




