ICML @ Sydney

Thirty-fourth International Conference on Machine Learning

Adversarial Feature Matching for Text Generation

Department of Electronic and Computer Engineering¹, Duke University, Durham, NC, 27708 Department of Statistical Science², Duke University, Durham, NC, 27708

Motivation & Contribution

1) Estimating a distribution over sentences from a corpus, then use it to sample realistic-looking text.

2) Ameliorating mode-collapsing issue associated with standard GAN training.

3) Discretization approximations for text modeling

Introductions

Generative adversarial network (GAN) aims to obtain the equilibrium of the following optimization objective:

 $\mathcal{L}_{GAN} = \mathbb{E}_{x \sim p_x} \log D(x) + \mathbb{E}_{z \sim p_z} \log[1 - D(G(z))]$

Minimizing the Jenson-Shannon Divergence (JSD) between the real data distribution and the synthetic data distribution.

TextGAN objective

We adopt a feature matching approach instead of vanilla GAN objective. Specifically, we consider the objective

$$\begin{split} \mathcal{L}_{D} &= \mathcal{L}_{GAN} - \lambda_{r} \mathcal{L}_{recon} + \lambda_{m} \mathcal{L}_{MMD^{2}} \\ \mathcal{L}_{G} &= \mathcal{L}_{MMD^{2}} \\ \mathcal{L}_{GAN} &= \mathbb{E}_{s \sim S} \log D(s) + \mathbb{E}_{z \sim p_{z}} \log[1 - D(G(z))] \\ \mathcal{L}_{recon} &= ||\hat{z} - z||^{2} , \end{split}$$

- *Easier to train:* G try to match the sentence feature "fingerprint" rather than directly cheat D, which is more achievable.
- Enforce the generator to generate *different* sentence rather than a single one.
- The blue reconstruction loss in (3) enforce the most *representative* features for G is selected.
- The red mmd loss in (3) enforce the most *challenging* features for G is selected.

Using CNN discriminator and LSTM generator.

Figure: LSTM generator (left) and CNN discriminator (right)

Yizhe Zhang^{1,2}, Zhe Gan¹, Kai Fan², Zhi Chen¹, Ricardo Henao¹, Lawrence Carin¹

MMD objective

- Instead of using original GAN loss, we consider a moment matching loss over CNN feature layer using maximum mean discrepancy (MMD).
 - The MMD measures the mean squared difference of two sets of samples over RKHS:

$$\begin{split} \mathcal{L}_{MMD^2} &= ||\mathbb{E}_{x \sim \mathcal{X}} \phi(x) - \mathbb{E}_{y \sim \mathcal{Y}} \phi(y)||_{\mathcal{H}}^2 \\ &= \mathbb{E}_{x \sim \mathcal{X}} \mathbb{E}_{x' \sim \mathcal{X}} [k(x, x')] \\ &+ \mathbb{E}_{y \sim \mathcal{Y}} \mathbb{E}_{y' \sim \mathcal{Y}} [k(y, y')] - 2\mathbb{E}_{x \sim \mathcal{X}} \mathbb{E}_{y \sim \mathcal{Y}} [k(x, y')] \end{split}$$

• With a Gaussian kernel $k(x, x') = exp(-\frac{||x-x'||^2}{2\sigma})$, the minimizing the MMD objective is can be perceived as minimizing all order of moments of two empirical distributions.

Discretization approximation

- Score-function-based approaches, such as the REINFORCE algorithm, has very large variance of the gradient estimation.
- We consider a Gumbel-softmax approach to approximate argmax operation .

$$\mathbf{y}_{t-1} = \mathbf{W}_{\mathbf{e}} \operatorname{softmax}(\mathbf{V}\mathbf{h}_{t-1} \odot \mathbf{L}).$$

where \odot represents the element-wise product. Note that when $L \to \infty$, this approximation approaches argmax operation.

Alternative objective

- Problems: a minibatch (256) of data point is not densely sampled in feature space with high dimension (900).
- Alternative models:
 - Mapping feature space to lower dimension
 - Use accumulated batches, however kernel-based method is not available anymore. Instead we use Jensen-Shannon divergence:

$$L_G = \operatorname{tr}(\boldsymbol{\Sigma}_s^{-1}\boldsymbol{\Sigma}_r + \boldsymbol{\Sigma}_r^{-1}\boldsymbol{\Sigma}_s) + (\boldsymbol{\mu}_s - \boldsymbol{\mu}_r)^T (\boldsymbol{\Sigma}_s^{-1} + \boldsymbol{\Sigma}_r^{-1})(\boldsymbol{\mu}_s)$$

• Σ and μ are covariance and mean for the discriminative feature vector.

Results: empirical evaluation

Table: Sentences generated by textGAN.

а	we show the joint likelihood estimator (in a large number of estimating variables embedded on the subspace learning) .
b	this problem achieves less interesting choices of convergence guarantees
	on turing machine learning .
с	in hidden markov relational spaces , the random walk feature decomposition
	is unique generalized parametric mappings.
d	i see those primitives specifying a deterministic probabilistic machine
	learning algorithm .
e	i wanted in alone in a gene expression dataset which do n't form phantom
	action values .
f	as opposite to a set of fuzzy modelling algorithm , pruning is performed

using a template representing network structures

Moment matching comparison

y)]

Figure: Moment matching comparison. Left: expectations of latent features from real *vs.* synthetic data. Right: elements of $\tilde{\Sigma}_{i,j,f}$ *vs.* $\tilde{\Sigma}_{i,i,\tilde{f}}$, for real and synthetic data, respectively.

Interpolation in latent space

Svn. sent. feature mean

	textGAN	AE			
Α	our methods apply novel approaches to solve modeling tasks .				
-	our methods apply novel approaches to solve	our methods apply to train UNK models			
	modeling .	involving complex .			
-	our methods apply two different approaches	our methods solve use to train) .			
	to solve computing .				
-	our methods achieves some different ap-	our approach show UNK to models exist .			
	proaches to solve computing .				
-	our methods achieves the best expert struc-	that supervised algorithms show to UNK			
	ture detection .	speed .			
-	the methods have been different related tasks	that address algorithms to handle) .			
-	the guy is the minimum of UNK .	that address versions to be used in .			
-	the guy is n't easy tonight .	i believe the means of this attempt to cope			
-	i believe the guy is n't smart okay?	i believe it 's we be used to get .			
-	i believe the guy is n't smart .	i believe it i 'm a way to belong .			
В	i believe i 'm going to get out .				

Quantitative comparison

Table: Quantitative results using BLEU-2,3,4 and KDE.

	BLEU-4	BLEU-3	BLEU-2	KDE(nat
AE	0.01 ± 0.01	0.11 ± 0.02	0.39 ± 0.02	2727±4
VAE	0.12 ± 0.06	$0.40 {\pm} 0.06$	0.61 ± 0.07	2025 ± 2
seqGAN	0.04 ± 0.04	$0.30 {\pm} 0.08$	0.67 ± 0.04	2019 ± 5
textGAN(MM)	0.09 ± 0.04	0.42 ± 0.04	0.77 ± 0.03	1823 ± 5
textGAN(CM)	0.12 ± 0.03	$0.49 {\pm} 0.06$	$0.84{\pm}0.02$	1686 ± 4
textGAN(MMD)	$0.13{\pm}0.05$	$0.49 {\pm} 0.06$	0.83 ± 0.04	1688 ± 3
textGAN(MMD-L)	$0.11 {\pm} 0.05$	$0.52{\pm}0.07$	$0.85{\pm}0.04$	1684 \pm 4

Conclusion

- We introduced a novel approach for text generation using adversarial training
- We discussed several techniques to specify and train such a model.
- We demonstrated that the proposed model delivers superior performance compared to related approaches.

 $-\mu_r)$

