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Background

Deep neural nets have achieved great success in learning
task-dependent sentence representations

feedforward neural nets
recurrent neural nets
convolutional neural nets
recursive neural nets
. . .

Downstream tasks:
classification, entailment, semantic relatedness, paraphrase
detection, ranking ...

Potential drawback:
They are trained specifically for a certain task, requiring
retraining a new model for each individual task.
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Problem of interest

Problem of interest: learning generic sentence representations
that can be used across domains.
In computer vision, CNN trained on ImageNet, C3D trained
on Sports-1M have been used to learn a generic image/video
encoder that can be transferred to other tasks.
How to achieve it in NLP?

what dataset to use?
what neural net encoder to use?
what task to perform?

Follow the Skip-Thought vector work1

1Kiros, Ryan, et al. “Skip-thought vectors” NIPS, 2015.
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Review: skip-thought vectors

Model: GRU-GRU encoder-decoder framework
Task: Encode a sentence to predict its neighboring two
sentences
Dataset: BookCorpus, 70M sentences over 7000 books
Input: I got back home. I could see the cat on the steps. This
was strange.

Figure taken from Kiros, Ryan, et al. “Skip-thought vectors” NIPS, 2015.
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Contributions of this paper

Model: CNN is used as the sentence encoder instead of RNN
CNN-LSTM model
hierarchical CNN-LSTM model

Task: different tasks are considered, including
self-reconstruction
predicting multiple future sentences (a larger context window
size is considered)

Better empirical performance than skip-thought vectors
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Model

(Left) (a)+(c): autoencoder, capturing intra-sent. info.
(Left) (b)+(c): future predictor, capturing inter-sent. info.
(Left) (a)+(b)+(c): composite model, capturing both two
(Right) hierarchical model, longer-term inter-sent. info.

Abstracting the RNN language model to the sentence level

you$$$$$$will$$$$$$love$$$$$$it$$$$$$$$$$!

you$$will$$$love$$$it$$$$$$$$! i promise$$.

sentence&encoder

sentence&decoder

paragraph&
generator

this$$$$$$$is$$$$$$$great$$$$$$$.you$$$$$$will$$$$$$love$$$$$$it$$$$$$$$$$!

!$$$$$$$it$$$$$love$$will$$$you i promise$$.

sentence&encoder

sentence&decoder

(a) (b)

(c)
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CNN-LSTM model

Use the CNN architecture in Kim (2014)2
A sentence is represented as a matrix X ∈ Rk×T , followed by
a convolution operation.
A max-over-time pooling operation is then applied.

This

is

a

very

good

english

movie

ff

Sentence as a T by k matrix Convolving Max-pooling
(Feature layer)

Fully 
connected 

MLP

2Kim, Yoon. "Convolutional neural networks for sentence classification."
EMNLP 2014.
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CNN-LSTM model

Many CNN variants: deeper, attention ...
CNN v.s. LSTM: difficult to say which one is better.
CNN typically requires fewer parameters due to the sparse
connectivity, hence reducing memory requirements

our trained CNN encoder: 3M parameters;
skip-thought vector: 40M parameters

CNN is easy to implement in parallel over the whole sentence,
while LSTM needs sequential computation
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CNN-LSTM model

LSTM decoder: translating latent code z into a sentence
Objective: cross-entropy loss of predicting sy given sx

hLhLZ h1h1 …

…y1y1

LSTM

G

yLyL
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Hierarchical CNN-LSTM Model

This model characterizes the hierarchy word-sentence-paragraph.

LSTMS LSTMS

CNN CNN w2v w2v

(Left) LSTMP                                                                        (Right) LSTMS
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Related work

Learning generic sentence embedding
Skip-thought vector NIPS 2015
FastSent NAACL 2016
Towards universal paraphrastic sentence embeddings ICLR
2016
A simple but tough-to-beat baseline for sentence embeddings
ICLR 2017
InferSent EMNLP 2017
. . .

CNN as encoder
image captioning
also utilzied for machine translation

Hierarchical language modeling
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Setup

Tasks: 5 classification benchmarks, paraphrase detection,
semantic relatedness and image-sentence ranking
Training data: BookCorpus, 70M sentences over 7000 books
CNN encoder: we employ filter windows of sizes {3,4,5} with
800 feature maps each, hence 2400-dim.
LSTM decoder: one hidden layer of 600 units.
The CNN-LSTM models are trained with a vocabulary size of
22,154 words.
Considering words not in the training set:

first we have pre-trained word embeddings Vw2v
learn a linear transformation to map from Vw2v to Vcnn
use fixed word embedding Vw2v
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Qualitative analysis - sentence retrieval

Query and nearest sentence

johnny nodded his curly head , and then his breath eased into an even rhythm .
aiden looked at my face for a second , and then his eyes trailed to my extended hand .

i yelled in frustration , throwing my hands in the air .
i stand up , holding my hands in the air .

i loved sydney , but i was feeling all sorts of homesickness .
i loved timmy , but i thought i was a self-sufficient person .

“ i brought sad news to mistress betty , ” he said quickly , taking back his hand .
“ i really appreciate you taking care of lilly for me , ” he said sincerely , handing me the money .

“ i am going to tell you a secret , ” she said quietly , and he leaned closer .
“ you are very beautiful , ” he said , and he leaned in .

she kept glancing out the window at every sound , hoping it was jackson coming back .
i kept checking the time every few minutes , hoping it would be five oclock .

leaning forward , he rested his elbows on his knees and let his hands dangle between his legs .
stepping forward , i slid my arms around his neck and then pressed my body flush against his .

i take tris ’s hand and lead her to the other side of the car , so we can watch the city disappear behind us .
i take emma ’s hand and lead her to the first taxi , everyone else taking the two remaining cars .
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Qualitative analysis - vector “compositionality”

word vector compositionality3
king - man + woman = queen

sentence vector compositionality
We calculate z?=z(A)-z(B)+z(C), which is sent to the LSTM
to generate sentence D.

A you needed me? this is great. its lovely to see you. he had thought he was going crazy.
B you got me? this is awesome. its great to meet you. i felt like i was going crazy.
C i got you. you are awesome. its great to meet him. i felt like to say the right thing.

D i needed you. you are great. its lovely to see him. he had thought to say the right thing.

3Mikolov, Tomas, et al. “Distributed representations of words and phrases
and their compositionality.” NIPS 2013.
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Quantitative results - classification & paraphrase detection

composite model > autoencoder > future predictor
hierarchical model > future predictor
combine > composite model > hierarchical model

Method MR CR SUBJ MPQA TREC MSRP(Acc/F1)

Our Results

autoencoder 75.53 78.97 91.97 87.96 89.8 73.61 / 82.14
future predictor 72.56 78.44 90.72 87.48 86.6 71.87 / 81.68
hierarchical model 75.20 77.99 91.66 88.21 90.0 73.96 / 82.54
composite model 76.34 79.93 92.45 88.77 91.4 74.65 / 82.21
combine 77.21 80.85 93.11 89.09 91.8 75.52 / 82.62
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Quantitative results - classification & paraphrase detection

Using (fixed) pre-trained word embeddings consistently
provides better performance than using the learned word
embeddings.

Method MR CR SUBJ MPQA TREC MSRP(Acc/F1)

Our Results

hierarchical model 75.20 77.99 91.66 88.21 90.0 73.96 / 82.54
composite model 76.34 79.93 92.45 88.77 91.4 74.65 / 82.21
combine 77.21 80.85 93.11 89.09 91.8 75.52 / 82.62

hierarchical model+emb. 75.30 79.37 91.94 88.48 90.4 74.25 / 82.70
composite model+emb. 77.16 80.64 92.14 88.67 91.2 74.88 / 82.28
combine+emb. 77.77 82.05 93.63 89.36 92.6 76.45 / 83.76
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Quantitative results - classification & paraphrase detection

Our model provides better results than skip-thought vectors.
Generic methods performs worse than task-dependent
methods.

Method MR CR SUBJ MPQA TREC MSRP(Acc/F1)

Generic

SDAE+emb. 74.6 78.0 90.8 86.9 78.4 73.7 / 80.7
FastSent 70.8 78.4 88.7 80.6 76.8 72.2 / 80.3
skip-thought 76.5 80.1 93.6 87.1 92.2 73.0 / 82.0
Ours 77.77 82.05 93.63 89.36 92.6 76.45 / 83.76

Task-dependent

CNN 81.5 85.0 93.4 89.6 93.6 −
AdaSent 83.1 86.3 95.5 93.3 92.4 −
Bi-CNN-MI − − − − − 78.1/84.4
MPSSM-CNN − − − − − 78.6/84.7
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Quantitative results - classification & paraphrase detection

Pretraining means initializing the CNN parameters using the
learned generic encoder.
The pretraining provides substantial improvements over
random initialization.
As the size of the set of labeled sentences grows, the
improvement becomes smaller, as expected.

MR CR SUBJ MPQA TREC
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Quantitative results - semantic relatedness

Similiar observation also holds true for semantic relatedness
and image-sentence retrieval tasks.

Method r ρ MSE

skip-thought 0.8584 0.7916 0.2687

Our Results

hierarchical model 0.8333 0.7646 0.3135
composite model 0.8434 0.7767 0.2972
combine 0.8533 0.7891 0.2791

hierarchical model+emb. 0.8352 0.7588 0.3152
composite model+emb. 0.8500 0.7867 0.2872
combine+emb. 0.8618 0.7983 0.2668

Task-dependent methods

Tree-LSTM 0.8676 0.8083 0.2532
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Quantitative results - image-sentence retrieval

Similiar observation also holds true for semantic relatedness
and image-sentence retrieval tasks.

Image Annotation Image Search
Method R@1 Med r R@1 Med r

uni-skip 30.6 3 22.7 4
bi-skip 32.7 3 24.2 4
combine-skip 33.8 3 25.9 4

Our Results

hierarchical model+emb. 32.7 3 25.3 4
composite model+emb. 33.8 3 25.7 4
combine+emb. 34.4 3 26.6 4

Task-dependent methods

DVSA 38.4 1 27.4 3
m-RNN 41.0 2 29.0 3
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Take away

Conclusion in Skip-Thought paper

Inspired by skip-thought, we considered
different encoders, such as CNN; save parameters, more
parallelizable
different tasks, including reconstruction and use of larger
context windows

and achieved promising performance
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Follow-up work

Q: How to learn a better sentence/paragraph representation?
A: Deconvolutional Paragraph Representation Learning

NIPS 2017
deeper CNN encoder
fully deconvolutional decoder
tries to slove the teacher forcing and exposure bias problems
used for (semi-)supervised learning
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Thank You
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