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A. Variants of Conditional TSBNs
In the main paper, we considered modeling real-valued se-
quence data. Other forms of data, such as binary and count
data, can also be modeled by slight modification of the
model.

Modeling binary data Our models can be readily ex-
tended to model binary sequence data, by substituting
p(vt|vt−1,ht,yt) = Ber(vt;σ(ṽt)), where

ṽt = W
(y)
2 ht + W

(y)
4 vt−1 + c(y) (1)

σ(x) = 1/(1 + exp(−x)), and Ber(x; p) denotes the
Bernoulli distribution with parameter p.

Modeling count data We also introduce an approach
for modeling time-series data with count observations,
p(vt|vt−1,ht,yt) =

∏M
m=1 s

vmt
mt , where
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exp(h>t w
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2m + v>t−1w

(y)
4m + c

(y)
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m′=1 exp(h>t w
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(y)
4m′ + c
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B. Inference Details
B.1. Outline of NVIL Algorithm

The outline of the NVIL Algorithm for computing gradi-
ents are shown in Algorithm 1. Cλ(vt) represents the sum
of data-dependent baseline and data-independent baseline.

B.2. Derivatives for Conditional TSBNs
For the Conditional TSBNs, we have:

p(hjt = 1|ht−1,vt−1,yt) = σ(h̃jt) (3)

p(vt|ht,vt−1,yt) = N (µt, diag(σ2
t )) (4)

h̃t = W
(y)
1 ht−1 + W

(y)
3 vt−1 + b(y) (5)

µt = W
(y)
2 ht + W

(y)
4 vt−1 + c(y) (6)

logσ2
t = W

′(y)
2 ht + W

′(y)
4 vt−1 + c′(y) (7)

Algorithm 1 Calculate gradient estimates for model pa-
rameters and recognition parameters.

∆θ ← 0, ∆φ← 0, ∆λ← 0
κ← 0, τ ← 0
L ← 0
for t← 1 to T do
ht ∼ qφ(ht|vt)
lt ← log pθ(vt,ht)− log qθ(ht|vt)
L ← L+ lt
lt ← lt − Cλ(vt)

end for
κb ← mean(l1, . . . , lT )
τb ← var(l1, . . . , lT )
κ← ρκ+ (1− ρ)κb
τ ← ρτ + (1− ρ)τb
for t← 1 to T do
lt ← lt−κ

max(1,
√
τ)

∆θ ← ∆θ +∇θ log pθ(vt,ht)
∆φ← ∆φ+ lt∇φ log qφ(ht|vt)
∆λ← ∆λ+ lt∇λCλ(vt)

end for

The recognition model is expressed as:

q(hjt = 1|ht−1,vt,vt−1,yt) = σ(ĥjt) (8)

ĥt = U
(y)
1 ht−1 + U

(y)
2 vt + U

(y)
3 vt−1 + d(y) (9)

In order to implement the NVIL algorithm, we need
to calculate the lower bound and also the gradients.
Specifically, the lower bound can be expressed as L =∑T
t=1 Eqφ(H|V)[lt], where

lt =

J∑
j=1

(h̃jthjt − log(1 + exp(h̃jt))) (10)

+

M∑
m=1

(
1

2
log 2π + log σmt +

(vmt − µmt)2

2σ2
mt

) (11)
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+

M∑
j=1

(ĥjthjt − log(1 + exp(ĥjt))) (12)

The gradients for model parameters θ are

∂ log pθ(vt,ht)

∂Ŵ1jj′s

= (hjt − σ(h̃jt)) · hj′(t−1) · yst (13)

∂ log pθ(vt,ht)

∂Ŵ2mjs

=
vmt − µmt

σ2
mt

· hjt · yst (14)

∂ log pθ(vt,ht)

∂Ŵ′
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= (
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σ2
mt

− 1) · hjt · yst (15)

∂ log pθ(vt,ht)

∂Ŵ3jms

= (hjt − σ(h̃jt)) · vm(t−1) · yst (16)

∂ log pθ(vt,ht)

∂Ŵ4mm′s

=
vmt − µmt

σ2
mt

· vm′(t−1) · yst (17)

∂ log pθ(vt,ht)
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− 1) · vm′(t−1) · yst

(18)

∂ log pθ(vt,ht)

∂Bjs
= (hjt − σ(h̃jt)) · yst (19)

∂ log pθ(vt,ht)

∂Cms
= (

vmt − µmt
σ2
mt

· yst) · yst (20)

∂ log pθ(vt,ht)

∂C′ms
= (
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σ2
mt
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The gradients for recognition parameters φ are

∂ log qφ(ht|vt)
∂Û1jj′s

= (hjt − σ(ĥjt)) · hj′(t−1) · yst (22)

∂ log qφ(ht|vt)
∂Û2jms

= (hjt − σ(ĥjt)) · hmt · yst (23)

∂ log qφ(ht|vt)
∂Û3jms

= (hjt − σ(ĥjt)) · vm(t−1) · yst (24)

∂ log qφ(ht|vt)
∂D̂js

= (hjt − σ(ĥjt)) · yst (25)

B.3. Derivatives for the Factored Model

The factored model substitutes the weight tensors Ŵ with
three matrices Wa, Wb, and Wc, such that

W(y) = Wa · diag(Wbyt) ·Wc (26)

We notice that for a particular W(y), the objective func-
tion for the t-th time step can be generalized as L′ =
f(W(y)η + χ) + ρ, where the elements of ∂η

W(y) , ∂χ
W(y)

and ∂ρ
W(y)

are zero. Assuming ξ = f ′(W(y)η + χ), we

have the following gradients:

∂L′

∂Wa
= ξ · (diag(Wbyt) ·Wcη)> (27)

∂L′

∂Wb
= ((W>

a ξ)� (Wcη)) · y>t (28)

∂L′

∂Wc
= diag(Wbyt) ·Wa · ξη> (29)

where A � B denotes the element-wise product between
matrices A and B with the same dimensions.

For FCTSBN, the gradients for bias parameters in 19,
20, 21 and 25 remains the same, while gradients for the
factored weight parameters can be calculated using 27 -
29. For W1a, W1b and W1c, we have ξ = ht−σ(h̃t) and
η = ht−1. Hence the gradients for these parameters are:

∂ log pθ(vt,ht)

∂W1a
= (ht − σ(h̃t)) · (diag(W1byt) ·W1cht−1)>

(30)

∂ log pθ(vt,ht)

∂W1b
= ((W>

1a(ht − σ(h̃t)))� (W1cht−1)) · y>t
(31)

∂ log pθ(vt,ht)

∂W1c
= diag(W1byt) ·W1a · (ht − σ(h̃t))h

>
t−1

(32)
Gradients of other factored parameters can be derived in
analogy.

B.4. Gradients for Deep Models

Suppose we have a two-layered deep CTSBN with the
joint probability distribution pθ(V,H,Z). Z = [z1, ·, zT ],
where zt ∈ {0, 1}K is the latent variables on the second
layer at time t. The probability of zt and ht are character-
ized by

p(zkt = 1|ht−1, zt−1,yt) = σ(z̃et) (33)

p(hjt = 1|ht−1, zt,vt−1,yt) = σ(h̃jt) (34)

z̃v = W
(y)
6 ht−1 + W

(y)
7 zt−1 + a(y) (35)

h̃t = W
(y)
1 ht−1 + W

(y)
3 vt−1 + W

(y)
5 zt + b(y) (36)

The recognition model for zt is expressed as:

q(zkt = 1|zt−1,ht,ht−1,yt) = σ(ẑkt) (37)

ẑt = U
(y)
4 zt−1 + U

(y)
5 ht + U

(y)
6 ht−1 + e(y) (38)

The lower bound takes the form L =
∑T
t=1 Eqφ(Z,H|V)[lt],

where

lt =

J∑
j=1

(h̃jthjt − log(1 + exp(h̃jt))) (39)

+

M∑
m=1

(
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2
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) (40)
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+

M∑
j=1

(ĥjthjt − log(1 + exp(ĥjt))) (41)

+

K∑
k=1

(z̃ktzkt − log(1 + exp(z̃kt))) (42)

+

K∑
k=1

(ẑktzkt − log(1 + exp(ẑkt))) (43)

Compared with the one-layer model, the two-layer model
adds two terms concerning zt, whose form is similar to that
of ht. Therefore, gradients for additional parameters (Ŵ5,
Ŵ6, Ŵ7, Û4, Û5, Û6, A and E) can be readily calculated
using Equations 13, 22, 19. If the model parameters are
factored, gradients can be calculated using 27-29.

B.5. Semi-supervised FCTSBN

The lower bound for semi-supervised learning Ls can be
described as Ls = Ll+Lu, where Ll and Lu are the lower
bounds for labeled data and unlabeled data respectively:

Ll = L+ α · Ep̃l(V,Y)[log qθ(Y|V)] (44)
Lu = J (qφ(H,Y|V), pθ(H,V,Y)) (45)

For labeled data, Ll adds a classification loss to the
generative model lower bound, where the gradient can
be readily calculated from Algorithm 1 plus a term
α∇θEp̃l(V,Y)[log qθ(Y|V)], which can also be approxi-
mated using Monte-Carlo integration. For unlabeled data,
Lu requires calculating the expectation with respect to
qφ(H,Y|V) = qφ(H|V,Y)qφ(Y|V). Hence, to opti-
mize Lu, we can sample Y from V first, and then apply
Algorithm 1 to obtain the approximated gradients. Outline
for optimizing Ls is shown in Algorithm 2.

Algorithm 2 Optimizing the semi-supervised objective Ls.
Initialize θ, φ
while not converged do

if sample labeled data then
(v,y) ∼ p̃l(V,Y)

else
v ∼ p̃u(V)
y ∼ qφ(y|v)

end if
Calculate∇θLs and ∇φLs
θ ← θ +∇θLs
φ← φ+∇φLs

end while

B.6. Computational Complexity

Although side information is included, the computational
complexity of learning and inference for CTSBN and

Style FCTSBN dFCTSBN FCRBM
Sexy 0.4971 0.2401 0.4926

Strong 0.2899 0.2415 0.3385
Cat 0.1858 0.1732 0.3475

Dinosaur 0.6299 0.4182 0.3387
Drunk 0.6227 0.6184 0.5005
Gangly 0.5553 0.3777 0.5474
Chicken 0.7798 0.6909 0.3519
Graceful 0.7184 0.4232 0.3544
Normal 0.3043 0.2330 0.2713
Old man 0.2483 0.1831 0.8125
Average 0.4832 0.3599 0.4355

Table 1: Average prediction error for mocap10

FCTSBN are comparable to that of TSBN. Suppose that
yt are one-hot encoded vectors, so gradients of some pa-
rameters are zero and does not cost computation. For
CTSBN, the complexity for calculating the gradient would
beO

(
(J+M)2mn

)
, wherem is the size of the mini batch,

and n is the order. For FCTSBN, the complexity would be
O
(
F (J +M)mn

)
.

Empirically, training for even the largest model in our ex-
periments takes around 10 hours on unoptimized MATLAB
using a laptop, whereas generating thousands of samples
can be achieved within seconds.

C. Extended Experiment Results
C.1. Generated Videos

Along with this supplementary article including more de-
tails for our model, we present a number of videos to
demonstrate the generative capacities of our models.

mocap2 We present synthesized sequences by the semi-
supervised Hidden Markov FCTSBN trained with labeled
and unlabeled data, namely walk.mp4, run.mp4, walk-
run.mp4 and run-walk.mp4.

The videos denotes sequences of (i) walking; (ii) running;
(iii) transition from walking to running; and (iv) transition
from running to walking.

mocap10 Sequences produced by the Hidden Markov
FCTSBN over the mocap10 dataset are presented, includ-
ing 9 styles and some style transitions and combinations.

C.2. Detailed Results on mocap10 Prediction

Average prediction error for each style can be found in Ta-
ble 1. For the FCTSBN and deep FCTSBN, each hidden
layer has 100 hidden variables and 50 factors, whereas the
FCRBM contains 600 hidden variables, 200 features and
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% of labeled data 10-KNN Softmax-0.001 Softmax-1 TSVM FCTSBN dFCTSBN
0.25 73.16 72.07± 0.52 71.44± 0.55 76.53 78.33± 1.75 79.95± 2.04

0.3125 78.00 78.11± 0.21 78.07± 1.34 79.47 81.11± 1.22 82.94± 1.08
0.375 81.37 82.31± 0.58 80.53± 0.73 81.47 83.74± 1.03 86.10± 1.53

0.4375 83.68 83.26± 0.84 80.91± 2.06 82.22 84.37± 2.96 87.20± 1.28
0.5 84.53 83.81± 0.86 81.26± 1.42 83.37 85.17± 1.84 87.70± 2.16

0.5625 86.00 85.11± 2.90 81.28± 1.64 84.31 86.84± 1.18 88.16± 1.25
0.625 85.47 85.78± 0.95 84.94± 0.74 86.94 88.17± 1.66 89.40± 1.55

0.6875 86.00 86.03± 1.49 83.95± 1.26 86.63 88.63± 1.45 89.40± 1.96
0.75 84.74 85.98± 1.51 85.07± 0.88 87.26 88.73± 1.68 89.57± 1.89

Table 2: Test accuracy (in percentage) of mocap10 classification.

200 factors.

C.3. Detailed Results on mocap10 Classification

We include error bar results for the mocap10 classification
task in Table 2.
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