
Deep Generative Models for
Vision and Language Intelligence

by

Zhe Gan

Department of Electrical and Computer Engineering
Duke University

Date:
Approved:

Lawrence Carin, Supervisor

Katherine Heller

Guillermo Sapiro

Henry Pfister

Galen Reeves

Dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in the Department of Electrical and Computer Engineering

in the Graduate School of Duke University
2018



Abstract

Deep Generative Models for

Vision and Language Intelligence

by

Zhe Gan

Department of Electrical and Computer Engineering
Duke University

Date:
Approved:

Lawrence Carin, Supervisor

Katherine Heller

Guillermo Sapiro

Henry Pfister

Galen Reeves

An abstract of a dissertation submitted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in the Department of Electrical and Computer

Engineering
in the Graduate School of Duke University

2018



Copyright c© 2018 by Zhe Gan
All rights reserved except the rights granted by the

Creative Commons Attribution-Noncommercial Licence

http://creativecommons.org/licenses/by-nc/3.0/us/


Abstract

Deep generative models have achieved tremendous success in recent years, with ap-

plications in various tasks involving vision and language intelligence. In this disser-

tation, I will mainly discuss the contributions that I have made in this field during

my Ph.D. study. Specifically, the dissertation is divided into two parts.

In the first part, I will mainly focus on one specific kind of deep directed generative

model, called Sigmoid Belief Network (SBN). First, I will present a fully Bayesian

algorithm for efficient learning and inference of SBN. Second, since the original SBN

can be only used for binary image modeling, I will also discuss the generalization

of it to model spare count-valued data for topic modeling, and sequential data for

motion capture synthesis, music generation and dynamic topic modeling.

In the second part, I will mainly focus on visual captioning (i.e., image-to-text

generation), and conditional image synthesis. Specifically, I will first present Seman-

tic Compositional Network for visual captioning, and emphasize interpretability and

controllability revealed in the learning algorithm, via a mixture-of-experts design,

and the usage of detected semantic concepts. I will then present Triangle Genera-

tive Adversarial Network, which is a general framework that can be used for joint

distribution matching and learning the bidirectional mappings between two different

domains. We consider the joint modeling of image-label, image-image and image-

attribute pairs, with applications in semi-supervised image classification, image-to-

image translation and attribute-based image editing.

iv



Dedicated to my wife, and parents.

v



Contents

Abstract iv

List of Tables xii

List of Figures xiv

Acknowledgements xvii

1 Introduction and Background 1

1.1 Deep Generative Models: An Overview . . . . . . . . . . . . . . . . . 1

1.1.1 Restricted Boltzmann Machines . . . . . . . . . . . . . . . . . 2

1.1.2 Sigmoid Belief Networks . . . . . . . . . . . . . . . . . . . . . 4

1.1.3 Variational Autoencoders . . . . . . . . . . . . . . . . . . . . 7

1.1.4 Generative Adversarial Networks . . . . . . . . . . . . . . . . 9

1.1.5 Autoregressive Models . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Thesis Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.1 Deep Generative Models for Binary Image Data . . . . . . . . 14

1.2.2 Deep Generative Models for Documents . . . . . . . . . . . . 14

1.2.3 Deep Generative Models for Sequential Data . . . . . . . . . . 15

1.2.4 Deep Generative Models for Visual Captioning . . . . . . . . . 15

1.2.5 Deep Generative Models for Joint Distribution Matching . . . 16

2 Learning Sigmoid Belief Networks 17

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

vi



2.2 Model formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Sigmoid Belief Networks . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Autoregressive Structure . . . . . . . . . . . . . . . . . . . . . 19

2.2.3 Deep Sigmoid Belief Networks . . . . . . . . . . . . . . . . . . 20

2.2.4 Bayesian sparsity shrinkage prior . . . . . . . . . . . . . . . . 21

2.3 Learning and inference . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Gibbs sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.2 Mean field variational Bayes . . . . . . . . . . . . . . . . . . . 25

2.3.3 Learning deep networks using SBNs . . . . . . . . . . . . . . . 27

2.4 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5.1 Experiment setup . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.2 Binarized MNIST dataset . . . . . . . . . . . . . . . . . . . . 31

2.5.3 Caltech 101 Silhouettes dataset . . . . . . . . . . . . . . . . . 33

2.5.4 OCR letters dataset . . . . . . . . . . . . . . . . . . . . . . . 34

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.7 Supplementary Material . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.7.1 Properties of Pólya-Gamma distribution . . . . . . . . . . . . 36

2.7.2 VB update equations . . . . . . . . . . . . . . . . . . . . . . . 36

3 Deep Poisson Factor Analysis for Topic Modeling 38

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Poisson Factor Analysis . . . . . . . . . . . . . . . . . . . . . 40

3.2.2 Structured Priors on the Latent Binary Matrix . . . . . . . . . 42

3.2.3 Deep Architecture for Topic Modeling . . . . . . . . . . . . . . 43

vii



3.3 Scalable Posterior Inference . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.1 Bayesian conditional density filtering . . . . . . . . . . . . . . 45

3.3.2 Stochastic gradient thermostats . . . . . . . . . . . . . . . . . 47

3.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5.1 Datasets and Setups . . . . . . . . . . . . . . . . . . . . . . . 53

3.5.2 Quantitative Evaluation . . . . . . . . . . . . . . . . . . . . . 54

3.5.3 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5.4 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.7 Supplementary Material . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.7.1 Conditional Densities used in BCDF . . . . . . . . . . . . . . 60

3.7.2 Evaluation Details on Perplexities . . . . . . . . . . . . . . . . 61

4 Temporal Sigmoid Belief Networks for Sequence Modeling 62

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.1 Temporal Sigmoid Belief Networks . . . . . . . . . . . . . . . 64

4.2.2 TSBN Variants . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.3 Deep Architecture for Sequence Modeling with TSBNs . . . . 67

4.3 Scalable Learning and Inference . . . . . . . . . . . . . . . . . . . . . 67

4.3.1 Variational Lower Bound Objective . . . . . . . . . . . . . . . 68

4.3.2 Parameter Learning . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.3 Extension to deep models . . . . . . . . . . . . . . . . . . . . 71

4.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

viii



4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5.1 Bouncing balls dataset . . . . . . . . . . . . . . . . . . . . . . 74

4.5.2 Motion capture dataset . . . . . . . . . . . . . . . . . . . . . . 74

4.5.3 Polyphonic music dataset . . . . . . . . . . . . . . . . . . . . 76

4.5.4 State of the Union dataset . . . . . . . . . . . . . . . . . . . . 77

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.7 Supplementary Material . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.7.1 Learning and Inference Details on TSBN . . . . . . . . . . . . 79

5 Semantic Compositional Networks for Visual Captioning 82

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3 Semantic compositional networks . . . . . . . . . . . . . . . . . . . . 87

5.3.1 Review of RNN for image captioning . . . . . . . . . . . . . . 87

5.3.2 Semantic concept detection . . . . . . . . . . . . . . . . . . . 88

5.3.3 SCN-RNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3.4 SCN-LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3.5 Extension to video captioning . . . . . . . . . . . . . . . . . . 93

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4.2 Training procedure . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4.4 Quantitative results . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4.5 Qualitative analysis . . . . . . . . . . . . . . . . . . . . . . . . 100

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.6 Supplementary Material . . . . . . . . . . . . . . . . . . . . . . . . . 103

ix



5.6.1 More results for Figure 5.4 . . . . . . . . . . . . . . . . . . . . 103

5.6.2 More results on image captioning . . . . . . . . . . . . . . . . 104

5.6.3 More results on video captioning . . . . . . . . . . . . . . . . 105

6 Triangle Generative Adversarial Networks 106

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2.1 Triangle Generative Adversarial Networks (∆-GANs) . . . . . 109

6.2.2 Theoretical analysis . . . . . . . . . . . . . . . . . . . . . . . . 110

6.2.3 Semi-supervised learning . . . . . . . . . . . . . . . . . . . . . 112

6.2.4 Relation to Triple GAN . . . . . . . . . . . . . . . . . . . . . 113

6.2.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.4.1 Toy data experiment . . . . . . . . . . . . . . . . . . . . . . . 116

6.4.2 Semi-supervised classification . . . . . . . . . . . . . . . . . . 117

6.4.3 Image-to-image translation . . . . . . . . . . . . . . . . . . . . 118

6.4.4 Attribute-conditional image generation . . . . . . . . . . . . . 121

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.6 Supplementary Material . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.6.1 Detailed theoretical analysis . . . . . . . . . . . . . . . . . . . 123

6.6.2 ∆-GAN training procedure . . . . . . . . . . . . . . . . . . . . 125

6.6.3 Additional experimental results . . . . . . . . . . . . . . . . . 125

6.6.4 Evaluation metrics for multi-label classification . . . . . . . . 125

6.6.5 Detailed network architectures . . . . . . . . . . . . . . . . . . 127

x



7 Conclusion and Future Work 129

7.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . 129

7.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Bibliography 133

Biography 150

xi



List of Tables

1.1 Summary of thesis contributions. . . . . . . . . . . . . . . . . . . . . 13

2.1 Log probability of test data on MNIST dataset. . . . . . . . . . . . . 30

2.2 Log probability of test data on Caltech 101 Silhouettes dataset. . . . 34

2.3 Log probability of test data on OCR letters dataset. . . . . . . . . . 35

3.1 Test perplexities for 20 Newsgroups. . . . . . . . . . . . . . . . . . . 55

3.2 Test perplexities on RCV1-v2 and Wikipedia. . . . . . . . . . . . . . 56

4.1 Average prediction error for the bouncing balls dataset. . . . . . . . . 74

4.2 Average prediction error obtained for the motion capture dataset. . . 75

4.3 Test log-likelihood for the polyphonic music dataset. . . . . . . . . . . 76

4.4 Average prediction precision for STU. . . . . . . . . . . . . . . . . . . 77

4.5 Top 6 most probable words associated with the STU topics. . . . . . 78

5.1 Performance of the proposed model (SCN-LSTM) and other state-of-
the-art methods on the COCO dataset. . . . . . . . . . . . . . . . . . 96

5.2 Performance of the proposed model (SCN-LSTM) and other state-of-
the-art methods on the Flickr30k dataset. . . . . . . . . . . . . . . . 97

5.3 Comparison to published state-of-the-art image captioning models on
the blind test set as reported by the COCO test server. . . . . . . . 98

5.4 Results on BLEU-4 (B-4), METEOR (M) and CIDEr-D (C) metrices
compared to other state-of-the-art results and baselines on Youtube2Text. 99

6.1 Error rates (%) on the partially labeled CIFAR10 dataset. . . . . . . 117

6.2 Classification accuracy (%) on the MNIST-to-MNIST-transpose dataset.118

xii



6.3 Results of P@10 and nDCG@10 for attribute predicting on CelebA
and COCO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.4 Architecture of the models for ∆-GAN on MNIST. BN denotes batch
normalization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.5 Architecture of the models for ∆-GAN on CelebA. BN denotes batch
normalization. lReLU denotes Leaky ReLU. . . . . . . . . . . . . . . 128

6.6 Architecture of the models for ∆-GAN on COCO. BN denotes batch
normalization. lReLU denotes Leaky ReLU. . . . . . . . . . . . . . . 128

xiii



List of Figures

1.1 Graphical model of RBM and SBN, respectively. . . . . . . . . . . . . 3

1.2 Graphical model of DBN, DBM and DSBN, respectively. . . . . . . . 6

1.3 Illustration of VAE and GAN, respectively. . . . . . . . . . . . . . . . 7

2.1 Graphical model for the deep SBN with autoregressive structure. . . . 21

2.2 Performance on MNIST. (Left) Training data. (Middle) Averaged
synthesized samples. (Right) Learned features at the bottom layer. . 29

2.3 The impact of the number of hidden units on the average variational
lower bound of test data under the one-hidden-layer SBN. . . . . . . 32

2.4 Missing data prediction. For each subfigure, (Top) Original data.
(Middle) Hollowed region. (Bottom) Reconstructed data. . . . . . . 33

2.5 Performance on Caltech 101 Silhouettes. (Left) Training data. (Mid-
dle) Synthesized samples. (Right) Features at the bottom layer. . . . 33

2.6 Average variational lower bound obtained from the SBN 200 ´ 200
model on the Caltech 101 Silhouettes dataset. . . . . . . . . . . . . . 34

3.1 Graphical model for the Deep Poisson Factor Analysis with three lay-
ers of hidden binary hierarchies. . . . . . . . . . . . . . . . . . . . . 44

3.2 Predictive perplexities on the test set as a function of training docu-
ments seen. (Left) 20 News. (Middle) RCV1-v2. (Right) Wikipedia. . 55

3.3 Test perplexities w.r.t. mini-batch sizes on the three corpora. (Left)
20 Newsgroups. (Middle) RCV1-v2. (Right) Wikipedia. . . . . . . . . 57

3.4 Test perplexities as a function of training documents seen. (Left)
RCV1-v2. (Right) Wikipedia. . . . . . . . . . . . . . . . . . . . . . . 57

3.5 Top words from the 30 topics corresponding to the graph in Figure 3.6,
learned by DPFA-SBN from the 20Newsgroup corpus. . . . . . . . . . 58

xiv



3.6 Graphs induced by the correlation structure learned by DPFA-SBN
for the 20 Newsgroups. . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1 Graphical model for the Deep Temporal Sigmoid Belief Network. . . 65

4.2 (Left) Dictionaries learned on the bouncing balls. (Middle) Generated
polyphonic music. (Right) Time evolving for 3 topics learned on STU. 72

4.3 Generated motion trajectories. (Left) Walking. (Middle) Running-
running-walking. (Right) Running-walking. . . . . . . . . . . . . . . 75

5.1 Model architecture and illustration of semantic composition. . . . . . 84

5.2 Comparison of our proposed model with a conventional recurrent neu-
ral network (RNN) for caption generation. . . . . . . . . . . . . . . . 90

5.3 Illustration of semantic composition. Our model can adjust the cap-
tion smoothly as the semantic concepts are modified. . . . . . . . . . 100

5.4 Detected tags and sentence generation on COCO, by SCN-LSTM-T
and SCN-LSTM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.5 Detected tags and sentence generation on COCO, by LSTM-R, LSTM-
RT2, and SCN-LSTM. . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.6 Detected tags and sentence generation on Youtube2Text, by LSTM-
CR, LSTM-CRT2, and SCN-LSTM. . . . . . . . . . . . . . . . . . . . 101

5.7 More detected tags and sentence generation on COCO, by SCN-LSTM-
T and SCN-LSTM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.8 More detected tags and sentence generation on COCO, by LSTM-R,
LSTM-RT2 and SCN-LSTM. . . . . . . . . . . . . . . . . . . . . . . . 104

5.9 More detected tags and sentence generation on Youtube2Text, by
LSTM-CR, LSTM-CRT2 and SCN-LSTM. . . . . . . . . . . . . . . . 105

6.1 Illustration of the Triangle Generative Adversarial Network (∆-GAN). 108

6.2 Toy data experiment on ∆-GAN and Triple GAN. . . . . . . . . . . 116

6.3 Generated CIFAR10 samples, where each row shares the same label
and each column uses the same noise. . . . . . . . . . . . . . . . . . 118

6.4 Image-to-image translation experiments on the MNIST-to-MNIST-
transpose and edges2shoes datasets. . . . . . . . . . . . . . . . . . . 119

6.5 Results on the face-to-attribute-to-face experiment. . . . . . . . . . . 120

xv



6.6 Results on the image editing experiment. . . . . . . . . . . . . . . . . 120

6.7 Results on the image-to-attribute-to-image experiment. . . . . . . . . 121

6.8 Additional results on the face-to-attribute-to-face experiment. . . . . 125

6.9 Additional results on the image editing experiment. . . . . . . . . . 126

6.10 Additional results on the image-to-attribute-to-image experiment. . . 126

6.11 Attribute-conditional image generation on the COCO dataset. Input
attributes are omited for brevity. . . . . . . . . . . . . . . . . . . . . 126

xvi



Acknowledgements

Being a Ph.D. student in the machine learning group at Duke was lots of fun, and

joining it was one of the best decisions that I have ever made. First and foremost I

would like to express my sincere gratitude to my advisor, Professor Lawrence Carin,

for his excellent guidance, support, and inspiration. Larry taught me how to do

research, how to write academic papers, and our group meetings on every Friday

morning were always inspiring. Thank you for always being supportive, and giving

me the freedom to explore a diverse set of topics.

I would also like to show my appreciation for my dissertation committee members,

Professors Guillermo Sapiro, Henry Pfister, Galen Reeves, and Katherine Heller for

their time and effort to serve on my committee. I am also very grateful to Professors

David Dunson and Robert Calderbank for kindly providing me with guidance and

help through classes and the preliminary exam.

I would also like to express my thanks to Dr. Hung Hui for hosting me as

a research intern at Adobe Research. I also deeply appreciate Mr. Xiujun Li, Drs.

Xiaodong He, Jianfeng Gao, Lihong Li and Li Deng for their enlightening discussions

and valuable collaborations when I was a research intern at Microsoft Research.

Besides, I want to thank my fellow group members who either through discus-

sions or collaborations have helped me in my graduate career. Amongst many others,

this includes Ricardo Henao, Xin Yuan, Xuejun Liao, Piyush Rai, Zhengming Xing,

Shaobo Han, Yingjian Wang, David Carlson, Wenzhao Lian, Changwei Hu, Kyle

xvii



Ulrich, Yunchen Pu, Yizhe Zhang, Kai Fan, Changyou Chen, Chunyuan Li, An-

drew Stevens, Qinliang Su, Zhao Song, Xinyuan Zhang, Yitong Li, Wenlin Wang,

Kevin Liang, Gregory Spell, Dinghan Shen, Guoyin Wang, Liqun Chen, Shuyang

Dai, Jianqiao Li, Paidamoyo Chapfuwa, Ruiyi Zhang, Chenyang Tao, Hongteng Xu,

Dong Wang, Weiyao Wang, and Hao Liu for their help in and outside research. I also

want to thank Jiaming Song from Stanford University, Chuang Gan from Tsinghua

University and Tao Xu from Lehigh University for helpful discussions in research.

Finally and most importantly, I would like to dedicate this dissertation to my

wife Ya-wen Huang, and my parents Guohua Gan and Guihua Wu, for their love and

support.

xviii



1

Introduction and Background

Deep generative models have achieved tremendous success in recent years, with ap-

plications in different vision and language intelligence tasks. In this chapter, I will

first provide a brief overview of several popular deep generative models. Based on

this, I will then discuss the contributions that I have made in this field during my

Ph.D. study. This includes the deep generative models that I have developed for

documents, human motions, visual captioning and joint distribution matching.

1.1 Deep Generative Models: An Overview

One of the most important tasks for artificial intelligence (AI) is to develop algorithms

and techniques that endow computers with an understanding of our world. Genera-

tive models are one of the most promising approaches towards this goal1. Generative

models typically have latent variables that are inferred given observed data; the la-

tent variables are often used for a down-stream goal, such as classification. After

training, such models are useful for inference tasks given subsequent observed data.

On the other hand, generative models are also able to synthesize data by drawing

1 https://blog.openai.com/generative-models/

1

https://blog.openai.com/generative-models/


latent variables from the prior and pushing them through the model. This suggests

that generative models are at least useful in two aspects: (i) analyzing observed data

in terms of latent variables; (ii) generating “fake-but-realistic” data from real data.

The intuition behind this follows a famous quote:

“What I cannot create, I do not understand.”

-Richard Feynman

Generative models that are descriptive of data have been widely employed in

statistics and machine learning. Factor models (FMs) represent one commonly used

generative model (Tipping and Bishop, 1999), and mixtures of FMs have been em-

ployed to account for more-general data distributions (Ghahramani and Hinton,

1997). However, such models are not powerful and flexible enough in terms of extract-

ing meaningful representations from rich sensory inputs. Deep learning has achieved

tremendous success in recent years, and arguments have been made to suggest that

building such systems requires deep architectures: models composed of several layers

of nonlinear processing (Bengio et al., 2013).

In this dissertation, we will mainly focus on deep generative models. Specifically,

the following deep generative models will be discussed: (i) Restricted Boltzmann Ma-

chines (RBMs) (Hinton, 2002); (ii) Sigmoid Belief Networks (SBNs) (Neal, 1992);

(iii) Variational Autoencoders (VAEs) (Kingma and Welling, 2013); (iv) Genera-

tive Adversarial Networks (GANs) (Goodfellow et al., 2014); and (v) autoregressive

models.

1.1.1 Restricted Boltzmann Machines

Restricted Boltzmann machines (RBMs) have been used effectively in modeling dis-

tributions over binary-valued data (Salakhutdinov, 2015). Recent work on Boltz-

mann machines and their generalizations to exponential family distributions (Welling

et al., 2005) have allowed these models to be successfully used in many applications.

2



(Left) RBM                      (Right) SBN

!

ℎ

!

ℎ

Figure 1.1: Graphical model of RBM and SBN, respectively.

Below we will review the standard binary RBM.

An RBM is a particular type of Markov random field that has a two-layer architec-

ture (Smolensky, 1986), in which the “visible” stochastic binary variables v P t0, 1uD

are connected to “hidden” stochastic binary variables h P t0, 1uF , as shown in Fig-

ure 1.1(Left). The energy of the joint state tv,hu is defined as follow:

Epv,h;θq “ ´vJWh´ bJv ´ aJh (1.1)

“ ´

D
ÿ

i“1

F
ÿ

j“1

Wijvihj ´
D
ÿ

i“1

bivi ´
F
ÿ

j“1

ajbj , (1.2)

where θ “ tW, b,au are the model parameters. Wij represents the symmetric inter-

action term between visible variable i and hidden variable j, and bi and aj are bias

terms. The joint distribution over the visible and hidden variables is defined by

P pv,h;θq “
1

Zpθq expp´Epv,h;θqq (1.3)

Zpθq “
ÿ

v

ÿ

h

expp´Epv,h;θqq . (1.4)

The model then assigns the following probability to a visible vector v:

P pv;θq “
1

Zpθq
ÿ

h

expp´Epv,h;θqq . (1.5)

Zpθq is a computationally intractable partition function that guarantees P pv;θq is

a valid probability distribution.

3



The conditional distributions over hidden variables h and visible vectors v can be

easily derived from Equation (1.3) and are given by the following logistic functions:

P ph|v;θq “
ź

j

pphj|vq, P pv|h;θq “
ź

i

pvi|hq (1.6)

pphj “ 1|vq “ σ

˜

ÿ

i

Wijvi ` aj

¸

(1.7)

ppvi “ 1|hq “ σ

˜

ÿ

j

Wijhj ` bi

¸

, (1.8)

where σpxq “ 1{p1`expp´xqq is the logistic function. As can be seen, the conditional

distributions in the RBM are factorial, which makes inference fast. Since exact

maximum likelihood learning in this model is intractable, in practice, learning is

done by using the so-called Contrastive Divergence (CD) algorithm (Hinton, 2002).

The original binary RBM has been generalized to model real-valued data (Hinton

et al., 2006), such as pixel intensities of image patches, sparse count data (Salakhut-

dinov and Hinton, 2009b), such as word count vectors in a document, and sequential

data (Sutskever and Hinton, 2007), such as human motion captures. The RBM also

serves as the building blocks for the Deep Belief Network (DBN) (Hinton et al., 2006)

and Deep Boltzmann Machine (DBM) (Salakhutdinov and Hinton, 2009a), which are

two popular deep probabilistic generative models that provide state-of-the-art results

in many problems. The RBM model has also recently been generalzied to the Trun-

cated Gaussian Graphical Models (TGGM) (Su et al., 2017), which is a general

framework for unsupervised learning that can be used for real-valued, binary and

count data. TGGM also has close connections to ReLU-based neural networks.

1.1.2 Sigmoid Belief Networks

Deep directed generative models are considered for binary data, based on the Sigmoid

Belief Network (SBN) (Neal, 1992) (using methods like those discussed in Salakhut-

4



dinov et al. (2013), the model may be readily extended to real-valued data). Assume

we have N binary visible vectors, the nth of which is denoted vn P t0, 1u
J . An

SBN is a Bayesian network that models each vn in terms of binary hidden variables

hn P t0, 1u
K and weights W P RJˆK as

ppvjn “ 1|wj,hn, cjq “ σpwJj hn ` cjq , (1.9)

pphkn “ 1|bkq “ σpbkq , (1.10)

where σp¨q is the logistic function defined as σpxq “ 1{p1`expp´xqq, vn “ rv1n, . . . , vJns
J,

hn “ rh1n, . . . , hKns
J, W “ rw1, . . . ,wJ s

J, c “ rc1, . . . , cJ s
J and b “ rb1, . . . , bKs

J

are bias terms. The “local” latent vector hn is observation-dependent (a function of

n), while the “global” parameters W are used to characterize the mapping from hn

to vn for all n.

The graphical model of the SBN is shown in Figure 1.1(Right). As can be seen,

the SBN is closely related to the RBM. Specifically, the energy function of an RBM

is defined as

´Epvn,hnq “ v
J
n c` v

J
nWhn ` h

J
nb , (1.11)

In contrast, the energy function of an SBN may be written as

´Epvn,hnq “ vJn c` v
J
nWhn ` h

J
nb´

ÿ

j

logp1` exppwJj hn ` cjqq . (1.12)

The additional term in (1.12), when compared to (1.11), makes the energy function

no longer a linear function of weights W, but a simple partition function is obtained.

Therefore, the full likelihood under an SBN is trivial to calculate. Furthermore,

SBNs explicitly exhibit the generative process to obtain data, in which the hidden

layer provides a directed “explanation” for patterns generated in the visible layer.

Different algorithms have been developed for efficient learning and inference of

SBN, including Gibbs sampling (Neal, 1992; Gan et al., 2015c), mean-field variational

inference (Saul et al., 1996), a Gaussian-field approach (Barber and Sollich, 1999),

5



(Left) DBN         (Middle) DBM           (Right) DSBN

Figure 1.2: Graphical model of DBN, DBM and DSBN, respectively.

the wake-sleep algorithm (Hinton et al., 1995b), the Neural Variational Inference

and Learning (NVIL) algorithm (Mnih and Gregor, 2014), Monte Carlo expectation

maximization (Song et al., 2016b), stochastic gradient MCMC (Chen et al., 2015a; Li

et al., 2016a), stochastic spectral descent (Carlson et al., 2016), the recently proposed

factorized asymptotic Bayesian method (Song et al., 2017) among many others.

The original SBN model is considered only for binary data, which has been gener-

alized to model real-valued data (Zhang et al., 2016a), sparse count-valued data (Gan

et al., 2015d) and sequential data (Gan et al., 2015b). Similar to the way in which

deep belief networks and deep Boltzmann machines build hierarchies, one can stack

multiple SBNs to obtain a fully directed deep sigmoid belief network (DSBN). The

comparison among DBN, DBM and DSBN is illustrated in Figure 1.2. DBM is a

fully undirected graphical model, DSBN is a fully directed graphical model, while

DBN is a hybrid model, where the top two hidden layers are undirected connected,

while all the other layers are directed connected.

6



(Top) VAE

Real 
or 
Fake

generator

generator
discriminator

encoder

(Bottom) GAN

Figure 1.3: Illustration of VAE and GAN, respectively.

1.1.3 Variational Autoencoders

In SBN, we restrict the observation and latent variables to be binary. Now, we extend

it to a more general setup. Not only the generative model being more powerful, an

inference network is further proposed to allow fast approximate inference.

Consider an observed data sample x, modeled as being drawn from pθpx|zq,

with model parameters θ and latent code z. The prior distribution on the code is

denoted ppzq, typically a distribution that is easy to draw from, such as isotropic

Gaussian. The posterior distribution on the code given data x is pθpz|xq, and since

this is typically intractable, it is approximated as qφpz|xq, parameterized by learned

parameters φ. Conditional distributions qφpz|xq and pθpx|zq are typically designed

such that they are easily sampled and, for flexibility, modeled in terms of neural

networks (Kingma and Welling, 2013). Since z is a latent code for x, qφpz|xq is also

termed a stochastic encoder, with pθpx|zq a corresponding stochastic decoder. The

observed data are assumed drawn from qpxq, for which we do not have an explicit

form, but from which we have samples, i.e., the ensemble txiui“1,N used for learning.

An illustration of the VAE is provided in Figure 1.3(Top).

Our goal is to learn the model pθpxq “
ş

pθpx|zqppzqdz such that it synthesizes

7



samples that are well matched to those drawn from qpxq. We simultaneously seek

to learn a corresponding encoder qφpz|xq that is both accurate and efficient to im-

plement. Samples x are synthesized via x „ pθpx|zq with z „ ppzq; z „ qφpz|xq

provides an efficient coding of observed x, that may be used for other purposes (e.g.,

classification or caption generation when x is an image (Pu et al., 2016b)).

Specifically, the generative model is specified as

ppzq “ N pz|0, Iq, pθpx|zq “ fpx; z,θq , (1.13)

where the function fpx; z,θq is a suitable likelihood, modeled by a deterministic

neural network.

When doing posterior inference, we introduce an inference network, qφpz|xq, e.g.,

qφpz|xq “ N pz|µφpxq, diagpσ2
φpxqqq , (1.14)

where φ is the recognition parameters, and µφpxq and σ2
φpxq are modeled by deter-

ministic neural networks.

The objective function is the variational lower bound on the marginal likelihood,

which can be written as

Lpθ,φ;xq “ Eqφpz|xq r´ log qφpz|xq ` log pθpx, zqs (1.15)

“ ´DKL pqφpz|xq||ppzqq ` Eqφpz|xq rlog pθpx|zqs . (1.16)

The reason why we express the lower bound as (1.16) is that, (i) the first KL di-

vergence term is usually tractable, hence reducing the uncertainty of the gradients

if we calculate it explicitly; (ii) we can see clearly that, the first KL term is the

regularization term, while the second term is similar to the reconstruction error term

in the traditional auto-encoder framework.

The learning of θ and φ is via optimization methods, usually utilizing stochastic

gradient descent. In order to efficiently evaluate the gradient and reduce the variance

of the gradient information, the reparameterization trick is used. To be specific, since

8



qφpz|xq is specified as (1.14), hence

z “ µφpxq ` σφpxq ˝ ε with ε „ N p0, Iq . (1.17)

Therefore,

Eqφpz|xq rlog pθpx|zqs “ EN pε|0,Iq rlog pθpx|µφpxq ` σφpxq ˝ εqs . (1.18)

Now, the gradient can be evaluated as

∇tθ,φuEqφpz|xq rlog pθpx|zqs “ EN pε|0,Iq
“

∇tθ,φu log pθpx|µφpxq ` σφpxq ˝ εq
‰

. (1.19)

The original VAEs implement a Gaussian assumption for the encoder. More re-

cently, there has been a desire to remove this Gaussian assumption. Normalizing

flow (Rezende and Mohamed, 2015) employs a sequence of invertible transforma-

tion to make the distribution of the latent codes arbitrarily flexible. This work was

followed by inverse auto-regressive flow (Kingma et al., 2016), which uses recurrent

neural networks to make the latent codes more expressive. More recently, Stein-

VAE (Pu et al., 2017b) applies Stein variational gradient descent (Liu and Wang,

2016) to infer the distribution of latent codes, discarding the assumption of a para-

metric form of posterior distribution for the latent code.

1.1.4 Generative Adversarial Networks

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) constitute an-

other recent framework for learning a generative model. Specifically, GAN consists

of a generator G and a discriminator D that compete in a two-player minimax game,

where the generator is learned to map samples from an arbitray latent distribution to

data, while the discriminator tries to distinguish between real and generated samples.

The goal of the generator is to “fool” the discriminator by producing samples that

are as close to real data as possible. An illustration of the GAN model is provided

in Figure 1.3(Bottom). Specifically, D and G are learned as

min
G

max
D

V pD,Gq “ Ex„ppxqrlogDpxqs ` Ez„pzpzqrlogp1´DpGpzqqqs , (1.20)

9



where ppxq is the true data distribution, and pzpzq is usually defined to be a simple

distribution, such as the standard normal distribution. The generator G implicitly

defines a probability distribution pgpxq as the distribution of the samples Gpzq ob-

tained when z „ pzpzq. For any fixed generator G, the optimal discriminator is

Dpxq “ ppxq
pgpxq`ppxq

. When the discriminator is optimal, solving this adversarial game

is equivalent to minimizing the Jenson-Shannon Divergence (JSD) between ppxq and

pgpxq (Goodfellow et al., 2014). The global equilibrium is achieved if and only if

ppxq “ pgpxq, and the optimal value is ´2 log 2.

Recent extensions of GAN have focused on boosting the performance of image

generation by improving the generator (Radford et al., 2016), discriminator (Zhao

et al., 2017) or the training algorithm (Salimans et al., 2016; Arjovsky et al., 2017).

More recently, some researchers (Dumoulin et al., 2017; Donahue et al., 2017) have

employed a bidirectional network structure within the adversarial learning frame-

work, which in theory guarantees the matching of joint distributions over two do-

mains. However, non-identifiability issues are raised in Li et al. (2017a). For example,

they have difficulties in providing good reconstruction in latent variable models, or

discovering the correct pairing relationship in domain transformation tasks. It was

shown that these problems are alleviated in DiscoGAN (Kim et al., 2017), Cycle-

GAN (Zhu et al., 2017) via additional `1, `2 or adversarial losses.

1.1.5 Autoregressive Models

Autoregressive models such as PixelRNN (Oord et al., 2016b) and PixelCNN (Oord

et al., 2016a) instead train a network that models the conditional distribution of

every individual pixel given previous pixels. Similar ideas have been extended for

generating raw audio (Oord et al., 2016c) and language modeling (Dauphin et al.,

2016).

Besides the popular PixelRNN model, recurrent neural networks (RNNs) also

10



serve as a popular autoregressive model that has been widely used in natural language

processing applications. Below we briefly review RNN.

An RNN is a special type of neural network that is able to handle both variable-

length input and output. By training an RNN to predict the next output in a

sequence, given all previous outputs, it can be used to model joint probability dis-

tribution over sequences. To be specific, an RNN can take as input a sequence

x “ rx1,x2, . . . ,xT s by recursively processing each symbol while maintaining its

internal hidden state h. At time step t, the RNN reads the symbol xt P Rd and

updates its hidden state ht P Rp by

ht “ fθpxt,ht´1q , (1.21)

where f is a deterministic non-linear transition function, and θ is the parameter set of

f . The transition function f can be implemented with gated activation functions such

as long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997) or gated

recurrent units (GRU) (Cho et al., 2014), introduced below. RNNs model sequences

by parameterizing a factorization of the joint sequence probability distribution as a

product of conditional probabilities such that

ppx1, . . . ,xT q “
T
ź

t“1

ppxt|xătq, ppxt|xătq “ gφpht´1q , (1.22)

where g is a function that maps the RNN hidden state ht´1 to a probability distri-

bution onver possible outputs, and φ is the parameter set of g.

Vanilla RNN Equation (1.21) is defined as a simple non-linear hyperbolic tangent

function

ht “ tanhpWxt `Uht´1 ` bq . (1.23)

Long Short-Term Memory Unfortunately, a problem with RNNs with the above for-

mulation (1.23) is that, during training, the components of the gradient vector can

11



grow or decay exponentially over long sequences (Hochreiter and Schmidhuber,

1997). This problem with exploding or vanishing gradients makes it difficult for the

RNN model to learn long-range dependencies in a sequence.

The LSTM architecture (Hochreiter and Schmidhuber, 1997) addresses this prob-

lem of learning long-term dependencies by introducing a memory cell that is able to

preserve state over long periods of time. To be specific, each LSTM unit has a cell

which has a state ct at time t. This cell can be thought of as a memory unit. Access

to this memory unit for reading or modifying it is controlled through sigmoid gates:

input gate it, forget gate ft, and output gate ot. The hidden units ht are updated

as follows

it “ σpWixt `Uiht´1 ` biq , ft “ σpWfxt `Ufht´1 ` bf q , (1.24)

ot “ σpWoxt `Uoht´1 ` boq , c̃t “ tanhpWcxt `Ucht´1 ` bcq , (1.25)

ct “ ft d ct´1 ` it d c̃t , ht “ ot d tanhpctq . (1.26)

where σp¨q denotes the logistic sigmoid function, and d represents the element-wise

multiply operator. The key advantage of using an LSTM unit over a traditional

neuron in an RNN is that the cell state in an LSTM unit sums activities over time.

Gated Recurrent Units The gated recurrent unit (GRU) was proposed by Cho et al.

(2014) to make each recurrent unit to adaptively capture dependencies of different

time scales. Similar to the LSTM unit, the GRU has gating units that modulate the

flow of information inside the unit, however, without using a separate memory cell.

Specifically, the GRU has two gates: the reset gate rt and the update gate zt. The

hidden units ht are updated as follows

rt “ σpWrxt `Urht´1 ` brq , zt “ σpWzxt `Uzht´1 ` bzq , (1.27)

h̃t “ tanhpWxt `Uprt d ht´1q ` bq , ht “ p1´ ztq d ht´1 ` zt d h̃t . (1.28)

12



Table 1.1: Summary of thesis contributions.

Deep Generative Models Applications in Vision and Language Intelligence

SBN (Gan et al., 2015c) Binary image modeling
DPFA (Gan et al., 2015d) Topic modeling
TSBN (Gan et al., 2015b) Motion capture synthesis, Dynamic topic modeling

SCN (Gan et al., 2016b) Visual captioning
TriangleGAN (Gan et al., 2017f) Face image editing, Image-to-image translation

It has been shown that the GRU can achieve similar performances compared with

LSTM in the task of sequence modeling (Chung et al., 2014).

Variants Each of the three RNN architectures considered above can be expanded to

the Bidirectional RNN and the Multilayer RNN (also known as the stacked or deep

RNN). A Bidirectional RNN (Graves, 2013) consists of two RNNs that are run in

parallel: one on the input sequence and the other on the reverse of the input sequence.

At each time step, the hidden state of the bidirectional RNN is the concatenation of

the forward and backward hidden states. In Multilayer RNNs, the hidden state of an

RNN unit in layer ` is used as input to the RNN unit in layer `` 1 in the same time

step (Graves, 2013). The idea here is to let the higher layers capture longer-term

dependencies of the input sequence.

1.2 Thesis Contribution

The contributions of this dissertation is summarized in Table 1.1. The first three

models are all based on SBNs, which focus on modeling the data distribution ppxq

in one domain. The fourth model is based on RNN, while the fifth model is based

on GAN. These latter two both focus on modeling the joint distribution ppx,yq in

two related domains. Below, I will briefly review each individual model listed in

Table 1.1.

13



1.2.1 Deep Generative Models for Binary Image Data

Deep directed generative models are developed. The multi-layered model is designed

by stacking sigmoid belief networks, with sparsity-encouraging priors placed on the

model parameters. Learning and inference of layer-wise model parameters are im-

plemented in a Bayesian setting. By exploring the idea of data augmentation and

introducing auxiliary Pólya-Gamma variables, simple and efficient Gibbs sampling

and mean-field variational Bayes (VB) inference are implemented. To address large-

scale datasets, an online version of VB is also developed. Experimental results are

presented for three publicly available datasets: MNIST, Caltech 101 Silhouettes and

OCR letters.

1.2.2 Deep Generative Models for Documents

A new framework for topic modeling is developed, based on deep graphical models,

where interactions between topics are inferred through deep latent binary hierar-

chies. The proposed multi-layer model employs a deep sigmoid belief network or

restricted Boltzmann machine, the bottom binary layer of which selects topics for

use in a Poisson factor analysis model. Under this setting, topics live on the bottom

layer of the model, while the deep specification serves as a flexible prior for revealing

topic structure. Scalable inference algorithms are derived by applying Bayesian con-

ditional density filtering algorithm, in addition to extending recently proposed work

on stochastic gradient thermostats. Experimental results on several corpora show

that the proposed approach readily handles very large collections of text documents,

infers structured topic representations, and obtains superior test perplexities when

compared with related models.

14



1.2.3 Deep Generative Models for Sequential Data

Deep dynamic generative models are developed to learn sequential dependencies in

time-series data. The multi-layered model is designed by constructing a hierarchy of

temporal sigmoid belief networks (TSBNs), defined as a sequential stack of sigmoid

belief networks (SBNs). Each SBN has a contextual hidden state, inherited from

the previous SBNs in the sequence, and is used to regulate its hidden bias. Scalable

learning and inference algorithms are derived by introducing a recognition model that

yields fast sampling from the variational posterior. This recognition model is trained

jointly with the generative model, by maximizing its variational lower bound on the

log-likelihood. Experimental results on bouncing balls, polyphonic music, motion

capture, and text streams show that the proposed approach achieves state-of-the-art

predictive performance, and has the capacity to synthesize various sequences.

1.2.4 Deep Generative Models for Visual Captioning

A Semantic Compositional Network (SCN) is developed for image captioning, in

which semantic concepts (i.e., tags) are detected from the image, and the probability

of each tag is used to compose the parameters in a long short-term memory (LSTM)

network. The SCN extends each weight matrix of the LSTM to an ensemble of

tag-dependent weight matrices. The degree to which each member of the ensemble

is used to generate an image caption is tied to the image-dependent probability of

the corresponding tag. In addition to captioning images, we also extend the SCN

to generate captions for video clips. We qualitatively analyze semantic composition

in SCNs, and quantitatively evaluate the algorithm on three benchmark datasets:

COCO, Flickr30k, and Youtube2Text. Experimental results show that the proposed

method significantly outperforms prior state-of-the-art approaches, across multiple

evaluation metrics.

15



1.2.5 Deep Generative Models for Joint Distribution Matching

A Triangle Generative Adversarial Network (∆-GAN) is developed for semi-supervised

cross-domain joint distribution matching, where the training data consists of samples

from each domain, and supervision of domain correspondence is provided by only

a few paired samples. ∆-GAN consists of four neural networks, two generators and

two discriminators. The generators are designed to learn the two-way conditional

distributions between the two domains, while the discriminators implicitly define a

ternary discriminative function, which is trained to distinguish real data pairs and

two kinds of fake data pairs. The generators and discriminators are trained together

using adversarial learning. Under mild assumptions, in theory the joint distribu-

tions characterized by the two generators concentrate to the data distribution. In

experiments, three different kinds of domain pairs are considered, image-label, image-

image and image-attribute pairs. Experiments on semi-supervised image classifica-

tion, image-to-image translation and attribute-based image generation demonstrate

the superiority of the proposed approach.

16



2

Learning Sigmoid Belief Networks

In this chapter, I will present sigmoid belief networks for representation learning.

Both Gibbs sampling and mean-field variational approximation are implemented for

efficient learning and inference in a fully Bayesian setup, by using the idea of data

augmentation.

2.1 Introduction

The Deep Belief Network (DBN) (Hinton et al., 2006) and Deep Boltzmann Ma-

chine (DBM) (Salakhutdinov and Hinton, 2009a) are two popular deep probabilistic

generative models that provide state-of-the-art results in many problems. These

models contain many layers of hidden variables, and utilize an undirected graphi-

cal model called the Restricted Boltzmann Machine (RBM) (Hinton, 2002) as the

building block. A nice property of the RBM is that gradient estimates on the model

parameters are relatively quick to calculate, and stochastic gradient descent provides

relatively efficient inference. However, evaluating the probability of a data point

under an RBM is nontrivial due to the computationally intractable partition func-

tion, which has to be estimated, for example using an annealed importance sampling

17



algorithm (Salakhutdinov and Murray, 2008).

A directed graphical model that is closely related to these models is the Sigmoid

Belief Network (SBN) (Neal, 1992). The SBN has a fully generative process and

data are readily generated from the model using ancestral sampling. However, it

has been noted that training a deep directed generative model is difficult, due to the

“explaining away” effect. Hinton et al. (2006) tackle this problem by introducing the

idea of “complementary priors” and show that the RBM provides a good initialization

to the DBN, which has the same generative model as the SBN for all layers except the

two top hidden layers. In the work presented here we directly deal with training and

inference in SBNs (without RBM initialization), using recently developed methods

in the Bayesian statistics literature.

Previous work on SBNs utilizes the ideas of Gibbs sampling (Neal, 1992) and mean

field approximations (Saul et al., 1996). Recent work focuses on extending the wake-

sleep algorithm (Hinton et al., 1995b) to training fast variational approximations for

the SBN (Mnih and Gregor, 2014). However, almost all previous work assumes no

prior on the model parameters which connect different layers. An exception is the

work of Kingma and Welling (2013), but this is mentioned as an extension of their

primary work. Previous Gibbs sampling and variational inference procedures are

implemented only on the hidden variables, while gradient ascent is employed to learn

good model parameter values. The typical regularization on the model parameters

is early stopping and/or `2 regularization. In an SBN, the model parameters are not

straightforwardly locally conjugate, and therefore fully Bayesian inference has been

difficult.

The work presented here provides a method for placing priors on the model pa-

rameters, and presents a simple Gibbs sampling algorithm, by extending recent work

on data augmentation for Bayesian logistic regression (Polson et al., 2013a). More

specifically, a set of Pólya-Gamma variables are used for each observation, to re-

18



formulate the logistic likelihood as a scale mixture, where each mixture component

is conditionally normal with respect to the model parameters. Efficient mean-field

variational learning and inference are also developed, to optimize a data-augmented

variational lower bound; this approach can be scaled up to large datasets. Utiliz-

ing these methods, sparsity-encouraging priors are placed on the model parameters

and the posterior distribution of model parameters is estimated (not simply a point

estimate). Based on extensive experiments, we provide a detailed analysis of the

performance of the proposed method.

2.2 Model formulation

2.2.1 Sigmoid Belief Networks

Assume we have N binary visible vectors, the nth of which is denoted vn P t0, 1u
J .

As described in Section 1.1.2, an SBN is a Bayesian network that models each vn in

terms of binary hidden variables hn P t0, 1u
K and weights W P RJˆK as

ppvjn “ 1|wj,hn, cjq “ σpwJj hn ` cjq (2.1)

pphkn “ 1|bkq “ σpbkq , (2.2)

where σp¨q is the logistic function defined as σpxq “ 1{p1`expp´xqq, vn “ rv1n, . . . , vJns
J,

hn “ rh1n, . . . , hKns
J, W “ rw1, . . . ,wJ s

J, c “ rc1, . . . , cJ s
J and b “ rb1, . . . , bKs

J

are bias terms.

2.2.2 Autoregressive Structure

Instead of assuming that the visible variables in an SBN are conditionally indepen-

dent given the hidden units, a more flexible model can be built by using an au-

toregressive structure. The autoregressive sigmoid belief network (ARSBN) (Gregor

et al., 2014) is an SBN with within-layer dependency captured by a fully connected

directed acyclic graph, where each unit xj can be predicted by its parent units xăj,

19



defined as tx1, . . . , xj´1u. To be specific,

ppvjn “ 1|hn,văj,nq “ σpwJj hn ` s
J
j,ăjvăj,n ` cjq (2.3)

pphkn “ 1|hăk,nq “ σpuJk,ăkhăk,n ` bkq , (2.4)

where S “ rs1, . . . , sJ s
J and U “ ru1, . . . ,uKs

J are a lower triangular matrix that

contains the autoregressive weights within layers, while W is utilized to capture the

dependencies between different layers. If no hidden layer exists, we obtain the fully

visible sigmoid belief network (Frey, 1998), in which accurate probabilities of test

data points can be calculated.

In the work presented here, only stochastic autoregressive layers are considered,

while Gregor et al. (2014) further explore the utilization of deterministic hidden

layers. Furthermore, instead of using the simple linear autoregressive structure, one

can increase the representational power of the model by using more-complicated

autoregressive models, such as the work by Larochelle and Murray (2011), where

each conditional ppvjn|văj,nq is modeled by a neural network.

2.2.3 Deep Sigmoid Belief Networks

Similar to the way in which deep belief networks and deep Boltzmann machines

build hierarchies, one can stack additional hidden layers to obtain a fully directed

deep sigmoid belief network (DSBN). Consider a deep model with L layers of hidden

variables. To generate a sample, we begin at the top, layer L. For each layer be-

low, activation hplq is formed by a sigmoid transformation of the layer above hpl`1q

weighted by Wpl`1q. We repeat this process until the observation is reached. There-

fore, the complete generative model can be written as

ppvn,hnq “ ppvn|h
p1q
n qpph

pLq
n q

L´1
ź

l“1

pphplqn |h
pl`1q
n q . (2.5)

20



Figure 2.1: Graphical model for the deep SBN with autoregressive structure.

Let th
plq
1n, h

plq
2n, . . . , h

plq
Kln
u represent the set of hidden units for observation n in layer

l. For the top layer, the prior probability can be written as pph
pLq
kn “ 1q “ σpc

pL`1q
k q,

where c
pL`1q
k P R. Defining vn “ h

p0q
n , conditioned on the hidden units h

plq
n , the

hidden units at layer l ´ 1 are drawn from

pph
pl´1q
kn |hplqn q “ σppw

plq
k q

Jhplqn ` c
plq
k q , (2.6)

where Wplq “ rw
plq
1 , . . . ,w

plq
Kl´1

sJ connects layers l and l´1 and cplq “ rc
plq
1 , . . . , c

plq
Kl´1

sJ

is the bias term.

Figure 2.1 shows the graphical model for the deep SBN with autoregressive struc-

ture. Sp`q and U contain the autoregressive weights within layers, while Wp`q is

utilized to capture the dependencies between different layers.

2.2.4 Bayesian sparsity shrinkage prior

The learned features are often expected to be sparse. In imagery, for example,

features learned at the bottom layer tend to be localized, oriented edge filters which

are similar to the Gabor functions known to model V1 cell receptive fields (Lee et al.,

2008).

Under the Bayesian framework, sparsity-encouraging priors can be specified in a

21



principled way. Some canonical examples are the spike-and-slab prior, the Student’s-

t prior, the double exponential prior and the horseshoe prior (see Polson and Scott

(2012) for a discussion of these priors). The three parameter beta normal (TPBN)

prior (Armagan et al., 2011), a typical global-local shrinkage prior, has demonstrated

better (mixing) performance than the aforementioned priors, and thus is employed

in this paper. The TPBN shrinkage prior can be expressed as scale mixtures of

normals. If Wjk „ TPBNpa, b, φq, where j “ 1, . . . , J, k “ 1, . . . , K, (leaving off the

dependence on the layer l, for notational convenience) then

Wjk „ Np0, ζjkq , (2.7)

ζjk „ Gammapa, ξjkq , ξjk „ Gammapb, φkq ,

φk „ Gammap1{2, ωq , ω „ Gammap1{2, 1q .

When a “ b “ 1
2
, the TPBN recovers the horseshoe prior. For fixed values of a and

b, decreasing φ encourages more support for stronger shrinkage. In high-dimensional

settings, φ can be fixed at a reasonable value to reflect an appropriate expected

sparsity rather than inferring it from data.

Finally, to build up the fully generative model, commonly used isotropic normal

prior are imposed on the bias term b and c, i.e. b „ Np0, νbIKq, c „ Np0, νcIJq.

Note that when performing model learning, we truncate the number of hidden

units at each layer at K, which may be viewed as an upper bound within the model

on the number of units at each layer. With the aforementioned shrinkage on W, the

model has the capacity to infer the subset of units (possibly less than K) actually

needed to represent the data.

2.3 Learning and inference

In this section, Gibbs sampling and mean field variational inference are derived for

the sigmoid belief networks, based on data augmentation. From the perspective of

22



learning, we desire distributions on the model parameters tWplqu and tcplqu, and

distributions on the data-dependent th
plq
n u are desired in the context of inference.

The extension to ARSBN is straightforward and hence omitted. We again omit the

layer index l in the discussion below.

2.3.1 Gibbs sampling

Define V “ rv1, . . . ,vN s and H “ rh1, . . . ,hN s. From recent work for the Pólya-

Gamma data augmentation strategy (Polson et al., 2013a), that is, if γ „ PGpb, 0q,

b ą 0, then

peψqa

p1` eψqb
“ 2´beκψ

ż 8

0

e´γψ
2{2ppγqdγ , (2.8)

where κ “ a ´ b{2. Properties of the Pólya-Gamma variables are summarized in

Section 2.7.1. Therefore, the data-augmented joint posterior of the SBN model can

be expressed as

ppW,H, b, c, γp0q, γp1q|Vq (2.9)

9 exp

#

ÿ

j,n

pvjn ´
1

2
qpwJj hn ` cjq ´

1

2
γ
p0q
jn pw

J
j hn ` cjq

2

+

¨ exp

#

ÿ

k,n

phkn ´
1

2
qbk ´

1

2
γ
p1q
k b2k

+

¨ p0pγ
p0q, γp1q,W, b, cq ,

where γp0q P RJˆN and γp1q P RK are augmented random variables drawn from

the Pólya-Gamma distribution. The term p0pγ
p0q, γp1q,W, b, cq contains the prior

information of the random variables within. Let pp¨|´q represent the conditional

distribution given other parameters fixed, then the conditional distributions used in

the Gibbs sampling are as follows.

23



For γp0q, γp1q: The conditional distribution of γp0q is

ppγ
p0q
jn |´q9 exp

ˆ

´
1

2
γ
p0q
jn pw

J
j hn ` cjq

2

˙

¨ PGpγ
p0q
jn |1, 0q

“ PGp1,wJj hn ` cjq , (2.10)

where PGp¨, ¨q represents the Pólya-Gamma distribution. Similarly, we can obtain

ppγ
p1q
k |´q “ PGp1, bkq.

To draw samples from the Pólya-Gamma distribution, two strategies are utilized:

(i) using rejection sampling to draw samples from the closely related exponentially

tilted Jacobi distribution (Polson et al., 2013a); (ii) using a truncated sum of random

variables from the Gamma distribution and then match the first moment to keep the

samples unbiased (Zhou et al., 2012b). Typically, a truncation level of 20 works well

in practice.

For H: The sequential update of the local conditional distribution of H is

pphkn|´q “ Berpσpdknqq, where

dkn “ bk `w
J
k vn ´

1

2

J
ÿ

j“1

´

wjk ` γ
p0q
jn p2ψ

zk
jnwjk ` w

2
jkq

¯

, (2.11)

where ψ
zk
jn “ w

J
j hn ´ wjkhkn ` cj. Note that wk and wj represent the kth column

and the transpose of the jth row of W, respectively. The difference between an SBN

and an RBM can be seen more clearly from the sequential update. Specifically, in an

RBM, the update of hkn only contains the first two terms, which implies the update

of the hkn are independent of each other. In the SBN, the existence of the third term

demonstrates clearly the posterior dependencies between hidden units. Although the

rows of H are correlated, the columns of H are independent, therefore the sampling

of H is still efficient.

For W: The prior is a TPBN shrinkage prior with p0pwjq “ Np0, diagpζjqq, then

24



we have ppwj|´q “ Npµj,Σjq, where

Σj “

«

N
ÿ

n“1

γ
p0q
jn hnh

J
n ` diagpζ´1j q

ff´1

, (2.12)

µj “ Σj

«

N
ÿ

n“1

pvjn ´
1

2
´ cjγ

p0q
jn qhn

ff

. (2.13)

The update of the bias term b and c are similar to the above equation.

For TPBN shrinkage: One advantage of this hierarchical shrinkage prior is

the full local conjugacy that allows the Gibbs sampling easily implemented. Specif-

ically, the following posterior conditional distribution can be achieved: (1) ζjk|´ „

GIGp0, 2ξjk,W 2
jkq; (2) ξjk|´ „ Gammap1, ζjk ` φkq; (3) φk|´ „ Gammap1

2
J ` 1

2
, ω `

řJ
j“1 ξjkq; (4) ω|´ „ Gammap1

2
K ` 1

2
, 1 `

řK
k“1 φkq, where GIG denotes the gener-

alized inverse Gaussian distribution.

2.3.2 Mean field variational Bayes

Using the VB inference with the traditional mean field assumption, we approximate

the posterior distribution with Q “
ś

j,k qwjk
pwjkq

ś

j,n qhjnphjnqqγp0qjn
pγ
p0q
jn q; for no-

tational simplicity the terms concerning b, c, γp1q and the parameters of the TPBN

shrinkage prior are omitted. The variational lower bound can be obtained as

L “ xlog ppV|W,H, cqy ` xlog ppWqy ` xlog ppH|bqy

´ xlog qpWqy ´ xlog qpHqy , (2.14)

where x¨y represents the expectation w.r.t. the variational approximate posterior.

Note that xlog ppV|´qy “
ř

j,nxlog ppvjn|´qy, and each term inside the summa-

tion can be further lower bounded by using the augmented Pólya-Gamma variables.

Specifically, defining ψjn “ w
J
j hn ` cj, we can obtain

xlog ppvjn|´qy ě ´ log 2` pvjn ´ 1{2qxψjny

´
1

2
xγ
p0q
jn yxψ

2
jny ` xlog p0pγ

p0q
jn qy ´ xlog qpγ

p0q
jn qy , (2.15)

25



by using (2.8) and Jensen’s inequality. Therefore, the new lower bound L1 can be

achieved by substituting (2.15) into (4.6). Note that this is a looser lower bound

compared with the original lower bound L, due to the data augmentation. However,

closed-form coordinate ascent update equations can be obtained, shown below.

For γp0q, γp1q: optimizing L1 over qpγ
p0q
jn q, we have

qpγ
p0q
jn q9 exp

ˆ

´
1

2
γ
p0q
jn xψ

2
jny

˙

¨ PGpγ
p0q
jn |1, 0q

“ PG
´

1,
b

xψ2
jny

¯

. (2.16)

Similarly, we can obtain ppγ
p1q
k |´q “ PGp1,

a

xb2kyq. In the update of other varia-

tional parameters, only the expectation of γ
p0q
jn is needed, which can be calculated by

xγ
p0q
jn y “

1

2
?
xψ2

jny
tanhp

?
xψ2

jny

2
q. The variational distribution for other parameters are

in the exponential family, hence the update equations can be derived from the Gibbs

sampling, which are straightforward and provided in Section 2.7.2.

In order to calculate the variational lower bound, the augmented Pólya-Gamma

variables are integrated out, and the expectation of the logistic likelihood under the

variational distribution is estimated by Monte Carlo integration algorithm. In the

experiments 10 samples are used and were found sufficient in all cases considered.

The computational complexity of the above inference is OpNK2q, where N is

the total number of training data points. Every iteration of VB requires a full pass

through the dataset, which can be slow when applied to large datasets. Therefore,

an online version of VB inference is developed, building upon the recent online im-

plementation of latent Dirichlet allocation (Hoffman et al., 2013a). In online VB,

stochastic optimization is applied to the variational objective. The key observation

is that the coordinate ascent updates in VB precisely correspond to the natural gra-

dient of the variational objective. To implement online VB, we subsample the data,

26



compute the gradient estimate based on the subsamples and follow the gradient with

a decreasing step size.

2.3.3 Learning deep networks using SBNs

Once one layer of the deep network is trained, the model parameters in that layer are

frozen (at the mean of the inferred posterior) and we can utilize the inferred hidden

units as the input “data” for the training of the next higher layer. This greedy layer-

wise pre-training algorithm has been shown to be effective for DBN (Hinton et al.,

2006) and DBM (Salakhutdinov and Hinton, 2009a) models, and is guaranteed to

improve the data likelihood under certain conditions. In the training of a deep SBN,

the same strategy is employed. After finishing pre-training (sequentially for all the

layers), we then “un-freeze” all the model parameters, and implement global training

(refinement), in which parameters in the higher layer now can also affect the update

of parameters in the lower layer.

Discriminative fine-tuning (Salakhutdinov and Hinton, 2009a) is implemented in

the training of DBM by using label information. In the work presented here for the

SBN, we utilize label information (when available) in a multi-task learning setting

(like in Bengio et al. (2013)), where the top-layer hidden units are generated by

multiple sets of bias terms, one for each label, while all the other model parameters

and hidden units below the top layer are shared. This multi-task learning is only

performed when generating samples from the model.

2.4 Related work

The SBN was proposed by Neal (1992), and in the original paper a Gibbs sampler

was proposed to do inference. A natural extension to a variational approximation

algorithm was proposed by Saul et al. (1996), using the mean field assumption. A

Gaussian-field (Barber and Sollich, 1999) approach was also used for inference, by

27



making Gaussain approximations to the unit input. However, due to the fact that

the model is not locally conjugate, all the methods mentioned above are only used for

inference of distributions on the hidden variables H, and typically model parameters

W are learned by gradient descent.

Another route to do inference on SBNs are based on the idea of Helmholtz ma-

chines (Dayan et al., 1995), which are multi-layer belief networks with recognition

models, or inference networks. These recognition models are used to approximate

the true posterior. The wake-sleep algorithm (Hinton et al., 1995b) was first pro-

posed to do inference on such recognition models. Recent work focuses on training

the recognition models by maximizing a variational lower bound on the marginal log

likelihood (Mnih and Gregor, 2014; Gregor et al., 2014; Kingma and Welling, 2013;

Rezende et al., 2014).

In the work reported here, we focus on providing a fully Bayesian treatment on

the “global” model parameters and the “local” data-dependent hidden variables. An

advantage of this approach is the ability to impose shrinkage-based (near) sparsity

on the model parameters. This sparsity helps regularize the model, and also aids

in interpreting the learned model. The idea of Pólya-Gamma data augmentation

was first proposed to do inference on Bayesian logistic regression (Polson et al.,

2013a), and later extended to the inference of negative binomial regression (Zhou

et al., 2012b), logistic-normal topic models (Chen et al., 2013), and discriminative

relational topic models (Chen et al., 2014a). The work reported here serves as another

application of this data augmentation strategy, and a first implementation of analysis

of a deep-learning model in a fully Bayesian framework.

2.5 Experiments

We present experimental results on three publicly available binary datasets: MNIST,

Caltech 101 Silhouettes, and OCR letters. To assess the performance of SBNs trained

28



 

 

Figure 2.2: Performance on MNIST. (Left) Training data. (Middle) Averaged
synthesized samples. (Right) Learned features at the bottom layer.

using the proposed method, we show the samples generated from the model and

report the average log probability that the model assigns to a test datum.

2.5.1 Experiment setup

For all the experiments below, we consider a one-hidden-layer SBN with K “ 200

hidden units, and a two-hidden-layer SBN with each layer containing K “ 200 hidden

units. The autoregressive version of the model is denoted ARSBN. The fully visible

sigmoid belief network without any hidden units is denoted FVSBN.

The SBN model is trained using both Gibbs sampling and mean field VB, as well

as the proposed online VB method. The learning and inference discussed above is

almost free of parameter tuning; the hyperparameters settings are given in Section

2. Similar reasonable settings on the hyperparameters yield essentially identical

results. The hidden units are initialized randomly and the model parameters are

initialized using an isotropic normal with standard deviation 0.1. The maximum

number of iterations for VB inference is set to 40, which is large enough to observe

convergence. Gibbs sampling used 40 burn-in samples and 100 posterior collection

samples; while this number of samples is clearly too small to yield sufficient mixing

and an accurate representation of the posteriors, it yields effective approximations to

parameter means, which are used when presenting results. For online VB, the mini-

29



Table 2.1: Log probability of test data on MNIST dataset.

Model Dim Test log-prob.

SBN (online VB) 25 ´138.34
RBM (CD3) (Salakhutdinov and Murray, 2008) 25 ´143.20

SBN (online VB) 200 ´118.12
SBN (VB) 200 ´116.96
SBN.multi (VB) 200 ´113.02
SBN.multi (VB) 200´ 200 ´110.74
FVSBN (VB) ´ ´100.76
ARSBN (VB) 200 ´102.11
ARSBN (VB) 200´ 200 ´101.19
SBN (Gibbs) 200 ´94.30

SBN (NVIL) (Mnih and Gregor, 2014) 200 ´113.1
SBN (NVIL) (Mnih and Gregor, 2014) 200´ 200 ´99.8
DBN (Salakhutdinov and Murray, 2008) 500´ 2000 ´86.22
DBM (Salakhutdinov and Hinton, 2009a) 500´ 1000 ´84.62

batch size is set to 5000 with a fixed learning rate of 0.1. Local parameters were

updated using 4 iterations per mini-batch, and results are shown over 20 epochs.

The properties of the deep model were explored by examining Eppv|hp2qqrvs. Given

the second hidden layer, the mean was estimated by using Monte Carlo integration.

Given hp2q, we sample hp1q „ pphp1q|hp2qq and v „ ppv|hp1qq, repeat this procedure

1000 times to obtain the final averaged synthesized samples.

The test data log probabilities under VB inference are estimated using the varia-

tional lower bound. Evaluating the log probability using the Gibbs output is difficult.

For simplicity, the harmonic mean estimator is utilized. As the estimator is biased

(Wallach et al., 2009), we refer to the estimate as an upper bound.

ARSBN requires that the observation variables are put in some fixed order. In

the experiments, the ordering was simply determined by randomly shuffling the ob-

servation vectors, and no optimization of the ordering was tried. Repeated trials

with different random orderings gave empirically similar results.

30



2.5.2 Binarized MNIST dataset

We conducted the first experiment on the MNIST digit dataset which contains 60, 000

training and 10, 000 test images of ten handwritten digits (0 to 9), with 28ˆ28 pixels.

The binarized version of the dataset is used according to Murray and Salakhutdinov

(2009). Analysis was performed on 10, 000 randomly selected training images for

Gibbs and VB inference. We also examine the online VB on the whole training set.

The results for MNIST, along with baselines from the literature are shown in

Table 2.1. We report the log probability estimates from our implementation of

Gibbs sampling, VB and online VB using both the SBN and ARSBN model. “Dim”

represents the number of hidden units in each layer, starting with the bottom one.

pŹq taken from . SBN.multi denotes SBN trained in the multi-task learning setting.

First, we examine the performance in a low-dimensional model, with K “ 25,

and the results are shown in Table 2.1. All VB methods give similar results, so only

the result from the online method is shown for brevity. VB SBN shows improved

performance over an RBM in this size model (Salakhutdinov and Murray, 2008).

Next, we explore an SBN with K “ 200 hidden units. Our methods achieve sim-

ilar performance to the Neural Varitional Inference and Learning (NVIL) algorithm

(Mnih and Gregor, 2014), which is the current state of the art for training SBNs.

Using a second hidden layer, also with size 200, gives performance improvements

in all algorithms. In VB there is an improvement of 3 nats for the SBN model when

a second layer is learned. Furthermore, the VB ARSBN method gives a test log

probability of ´101.19. The current state of the art on this size deep sigmoid belief

network is the NVIL algorithm with ´99.8, which is quantitatively similar to our

results. The online VB implementation gives lower bounds comparable to the batch

VB, and will scale better to larger data sizes.

The TPBN prior infers the number of units needed to represent the data. The

31



5 10 15 20 25 30 35 40
−170

−160

−150

−140

−130

−120

Number of iterations

A
ve

ra
ge

 v
ar

ia
tio

na
l l

ow
er

 b
ou

nd
 o

f t
es

t d
at

a

One Hidden Layer SBN

 

 

25
50
100
200
500

Figure 2.3: The impact of the number of hidden units on the average variational
lower bound of test data under the one-hidden-layer SBN.

impact on the number of hidden units on the test set performance is shown in Figure

2.3. The models learned using 100, 200 and 500 hidden units achieve nearly identical

test set performance, showing that our methods are not overfitting the data as the

number of units increase. All models with K ą 100 typically utilize 81 features.

Thus, the TPBN prior gives “tuning-free” selection on the hidden layer size K. The

learned features are shown in Figure 2.2. These features are sparse and consistent

with results from sparse features learning algorithms (Lee et al., 2008).

The generated samples for MNIST are presented in Figure 2.2. The synthesized

digits appear visually good and match the true data well.

We further demonstrate the ability of the model to predict missing data. For each

test image, the lower half of the digit is removed and considered as missing data.

Reconstructions are shown in Figure 2.4, and the model produces good completions.

Because the labels of the images are uncertain when they are partially observed, the

model can generate different digits than the true digit (see the transition from 9 to

0, 7 to 9 etc.).

32



Figure 2.4: Missing data prediction. For each subfigure, (Top) Original data.
(Middle) Hollowed region. (Bottom) Reconstructed data.

 

Figure 2.5: Performance on Caltech 101 Silhouettes. (Left) Training data. (Mid-
dle) Synthesized samples. (Right) Features at the bottom layer.

2.5.3 Caltech 101 Silhouettes dataset

The second experiment is based on the Caltech 101 Silhouettes dataset (Marlin

et al., 2010), which contains 6364 training images and 2307 test images. Estimated

log probabilities are reported in Table 2.2.

In this dataset, adding the second hidden layer to the VB SBN greatly improves

the lower bound. Figure 2.6 demonstrates the effect of the deep model on learning.

The first hidden layer improves the lower bound quickly, but saturates. When the

second hidden layer is added, the model once again improves the lower bound on the

test set. Global training (refinement) further enhances the performance. The two-

layer model does a better job capturing the rich structure in the 101 total categories.

33



Table 2.2: Log probability of test data on Caltech 101 Silhouettes dataset.

Model Dim Test log-prob.

SBN (VB) 200 ´136.84
SBN (VB) 200´ 200 ´125.60
FVSBN (VB) ´ ´96.40
ARSBN (VB) 200 ´96.78
ARSBN (VB) 200´ 200 ´97.57

RBM (Cho et al., 2013) 500 ´114.75
RBM (Cho et al., 2013) 4000 ´107.78

20 40 60 80 100
−155

−150

−145

−140

−135

−130

−125

Number of iterations

A
ve

ra
ge

 v
ar

ia
tio

na
l l

ow
er

 b
ou

nd
 o

f t
es

t d
at

a

 

 

Pretraining Layer 1
Pretraining Layer 2
Global Training

Figure 2.6: Average variational lower bound obtained from the SBN 200 ´ 200
model on the Caltech 101 Silhouettes dataset.

For the simple dataset (MNIST with 10 categories, OCR letters with 26 categories,

discussed below), this large gap is not observed.

Remarkably, our implementation of FVSBN beats the state-of-the-art results on

this dataset (Cho et al., 2013) by 10 nats. Figure 2.5 shows samples drawn from the

trained model; different shapes are synthesized and appear visually good.

2.5.4 OCR letters dataset

The OCR letters dataset contains 16 ˆ 8 binary pixel images of 26 letters in the

English alphabet. The dataset is split into 42, 152 training and 10, 000 test examples.

Results are reported in Table 2.3. The proposed ARSBN with K “ 200 hidden

units achieves a lower bound of ´37.97. The state-of-the-art here is a DBM with

34



Table 2.3: Log probability of test data on OCR letters dataset.

Model Dim Test log-prob.

SBN (online VB) 200 ´48.71
SBN (VB) 200 ´48.20
SBN (VB) 200´ 200 ´47.84
FVSBN (VB) ´ ´39.71
ARSBN (VB) 200 ´37.97
ARSBN (VB) 200´ 200 ´38.56
SBN (Gibbs) 200 ´40.95

DBM (Salakhutdinov and Larochelle, 2010) 2000´ 2000 ´34.24

2000 hidden units in each layer (Salakhutdinov and Larochelle, 2010). Our model

gives results that are only marginally worse using a network with 100 times fewer

connections.

2.6 Discussion

A simple and efficient Gibbs sampling algorithm and mean field variational Bayes

approximation are developed for learning and inference of model parameters in the

sigmoid belief networks. This has been implemented in a novel way by introducing

auxiliary Pólya-Gamma variables. Several encouraging experimental results have

been presented, enhancing the idea that the deep learning problem can be efficiently

tackled in a fully Bayesian framework.

While this work has focused on binary observations, one can model real-valued

data by building latent binary hierarchies as employed here, and touching the data at

the bottom layer by a real-valued mapping, as has been done in related RBM models

(Salakhutdinov et al., 2013). Furthermore, the logistic link function is typically

utilized in the deep learning literature. The probit function and the rectified linearity

are also considered in the nonlinear Gaussian belief network (Frey and Hinton, 1999).

Under the Bayesian framework, by using data augmentation (Polson et al., 2011),

the max-margin link could be utilized to model the non-linearities between layers

when training a deep model.

35



2.7 Supplementary Material

2.7.1 Properties of Pólya-Gamma distribution

A random variable X has a Pólya-Gamma distribution (Polson et al., 2013a) with

parameters b ą 0 and c P R, denoted X „ PGpb, cq, if

X “
1

2π2

8
ÿ

k“1

gk
pk ´ 1{2q2 ` c2{p4π2q

, (2.17)

where each gk „ Gapb, 1q is an independent gamma random variable. We have

ErXs “
b

2c
tanhpc{2q “

b

2c

ˆ

ec ´ 1

ec ` 1

˙

. (2.18)

A key observation is that binomial likelihoods parametrized by log-odds can

be written as mixtures of Gaussians with respect to a Pólya-Gamma distribution.

Specifically, if γ „ PGpb, 0q, b ą 0, then

peψqa

p1` eψqb
“ 2´beκψ

ż 8

0

e´γψ
2{2ppγqdγ , (2.19)

where κ “ a ´ b{2. And we have γ|ψ „ PGpb, ψq. Proof is given in Polson et al.

(2013a), Section 3.

The generation of the Pólya-Gamma variables is detailed in Polson et al. (2013a),

Section 4. Other approximate methods for generation are discussed in the supple-

mental material of Zhou et al. (2012b) and Chen et al. (2013).

2.7.2 VB update equations

The VB update equations for the SBN model are listed below.

For γp0q, γp1q:

qpγ
p0q
jn q “ PG

´

1,
b

xpwJj hn ` cjq
2y

¯

, (2.20)

qpγ
p1q
k q “ PG

ˆ

1,
b

xb2ky

˙

. (2.21)

36



For H: qphknq “ Berpσpdknqq, where

dkn “ xbky ` xw
J
k vny (2.22)

´
1

2

J
ÿ

j“1

´

xwjky ` xγ
p0q
jn yp2xψ

zk
jnwjky ` xw

2
jkyq

¯

,

where ψ
zk
jn “ w

J
j hn ´ wjkhkn ` cj.

For W: qpwjq “ Npµj,Σjq, where

Σj “

«

N
ÿ

n“1

xγ
p0q
jn yxhnh

J
n y ` diagpxζ´1j yq

ff´1

, (2.23)

µj “ Σj

«

N
ÿ

n“1

pvjn ´
1

2
´ xcjyxγ

p0q
jn yqxhny

ff

. (2.24)

For TPBN shrinkage:

qpζjkq “GIGp0, 2xξjky, xW 2
jkyq , (2.25)

qpξjkq “Gammap1, xζjky ` xφkyq , (2.26)

qpφkq “Gamma

˜

1

2
J `

1

2
, xωy `

J
ÿ

j“1

xξjky

¸

, (2.27)

qpωq “Gamma

˜

1

2
K `

1

2
, 1`

K
ÿ

k“1

xφky

¸

. (2.28)

37



3

Deep Poisson Factor Analysis for Topic Modeling

In this chapter, I will present deep Poisson factor analysis for topic modeling. The

proposed multi-layer model employs a deep sigmoid belief network or restricted Boltz-

mann machine, the bottom binary layer of which selects topics for use in a Poisson

factor analysis model. Scalable inference algorithms are derived by applying Bayesian

conditional density filtering algorithm, and stochastic gradient thermostats.

3.1 Introduction

Considerable research effort has been devoted to developing probabilistic models for

documents. In the context of topic modeling, a popular approach is latent Dirichlet

allocation (LDA) (Blei et al., 2003), a directed graphical model that aims to discover

latent topics (word distributions) in collections of documents that are represented in

bag-of-words form. Recent work focuses on linking observed word counts in a docu-

ment to latent nonnegative matrix factorization, via a Poisson distribution, termed

Poisson factor analysis (PFA) (Zhou et al., 2012a). Different choices of priors on the

latent nonnegative matrix factorization can lead to equivalent marginal distributions

to LDA, as well as to the Focused Topic Model (FTM) of Williamson et al. (2010).

38



Additionally, hierarchical (“deep”) tree-structured topic models have been de-

veloped by using structured Bayesian nonparametric priors, including the nested

Chinese restaurant process (nCRP) (Blei et al., 2004), and the recently proposed

nested hierarchical Dirichlet process (nHDP) (Paisley et al., 2015). The nCRP is

limited because it requires that each document select topics from a single path in

a tree, while the nHDP allows each document to access the entire tree by defining

priors over a base tree. However, the relationship between two paths in these models

is only explicitly given on shared parent nodes.

Another alternative for topic modeling is to develop undirected graphical models,

such as the Replicated Softmax Model (RSM) (Salakhutdinov and Hinton, 2009b),

based on a generalization of the restricted Boltzmann machine (RBM) (Hinton,

2002). Also closely related to the RBM is the neural autoregressive density esti-

mator (DocNADE) (Larochelle and Lauly, 2012), a neural-network-based method,

that has been shown to outperform the RSM.

Deep models, such as the Deep Belief Network (DBN) (Hinton et al., 2006), the

Deep Boltzmann Machine (DBM) (Salakhutdinov and Hinton, 2009a), and layered

Bayesian networks (Kingma and Welling, 2013; Mnih and Gregor, 2014; Rezende

et al., 2014; Gan et al., 2015c) are becoming popular, as they consistently obtain

state-of-the-art performances on a variety of machine learning tasks. A popular

theme in this direction of work is to extend shallow topic models to deep counterparts.

In such a setting, documents arise from a cascade of layers of latent variables. For

instance, DBNs and DBMs have been generalized to model documents by utilizing

the RBM as a building block (Hinton and Salakhutdinov, 2011; Srivastava et al.,

2013).

Combining ideas from traditional Bayesian topic modeling and deep models, we

propose a new deep generative model for topic modeling, in which the Bayesian PFA

is employed to interact with the data at the bottom layer, while the Sigmoid Belief

39



Network (SBN) (Neal, 1992), a directed graphical model closely related to the RBM,

is utilized to buildup binary hierarchies. Furthermore, our model is not necessarily

restricted to SBN modules, and it is shown how an undirected model such as the

RBM can be incorporated into the framework as well.

Compared with the original DBN and DBM, our proposed model: (i) tends to

infer a more compact representation of the data, due to the “explaining away” effect

described by Hinton et al. (2006); (ii) allows for more direct exploration of the effect

of a single deep hidden node through ancestral sampling; and (iii) can be easily

incorporated into larger probabilistic models in a modular fashion. Compared with

the nCRP and nHDP, our proposed model only infers topics at the bottom layer, but

defines a flexible prior to capture high-order relationships between topics via a deep

binary hierarchical structure. In practice, this translates into better perplexities and

very interesting topic correlations, although not in a tree representation as in nCRP

or nHDP.

Another important contribution we present is to develop two scalable Bayesian

learning algorithms for our model: one based on the recently proposed Bayesian

conditional density filtering (BCDF) algorithm (Guhaniyogi et al., 2014), and the

other based on the stochastic gradient Nóse-Hoover thermostats (SGNHT) algorithm

(Ding et al., 2014). We extend the SGNHT by introducing additional thermostat

variables into the dynamic system, increasing the stability and convergence when

compared to the original SGNHT algorithm.

3.2 Model Formulation

3.2.1 Poisson Factor Analysis

Given a discrete matrix X P ZPˆN` containing counts from N documents and P

words, Poisson factor analysis (Zhou et al., 2012a) assumes the entries of X are

summations of K ă 8 latent counts, each produced by a latent factor (in the case

40



of topic modeling, a hidden topic). We represent X using the following factor model

X “ PoispΦpΘ ˝Hp1q
qq , (3.1)

where Φ is the factor loading matrix. Each column of Φ, φk P 4P , encodes the rel-

ative importance of each word in topic k, with 4P representing the P -dimensional

simplex. Θ P RKˆN
` is the factor score matrix. Each column, θn, contains relative

topic intensities specific to document n. Hp1q P t0, 1uKˆN is a latent binary feature

matrix. Each column, h
p1q
n , defines a sparse set of topics associated with each docu-

ment. For the single-layer PFA, the use of the superscript p1q on h
p1q
n is unnecessary;

we introduce this notation here in preparation for the subsequent deep model, for

which h
p1q
n will correspond to the associated first-layer latent binary units. The sym-

bol ˝ represents the Hadamard, or element-wise multiplication of two matrices. The

factor scores for document n are θn ˝ h
p1q
n .

A wide variety of algorithms have been developed by constructing PFAs with

different prior specifications (Zhou and Carin, 2015). If Hp1q is an all-ones matrix,

LDA is recovered from (3.1) by employing Dirichlet priors on φk and θn, for k “

1, . . . , K and n “ 1, . . . , N , respectively. This version of LDA is referred to as Dir-

PFA by Zhou et al. (2012a). For our proposed model, we construct PFAs by placing

Dirichlet priors on φk and gamma priors on θn. This is summarized as,

xpn “
K
ÿ

k“1

xpnk , xpnk „ Poispφpkθknh
p1q
kn q , (3.2)

with priors specified as φk „ Dirpaφ, . . . , aφq, θkn „ Gammaprk, pn{p1 ´ pnqq, rk „

Gammapγ0, 1{c0q, and γ0 „ Gammape0, 1{f0q.

The novelty in our model comes from the prior for the binary feature matrix

Hp1q. Previously, Zhou and Carin (2015) proposed a beta-Bernoulli process prior

on the columns th
p1q
n u

N
n“1 with pn “ 0.5. This model was called NB-FTM, tightly

related with the focused topic model (FTM) (Williamson et al., 2010). In the work

41



presented here, we construct Hp1q from a deep structure based on the SBN (or RBM)

with binary latent units.

3.2.2 Structured Priors on the Latent Binary Matrix

The second part of our model consists of a deep structure for a binary hierarchy. To

this end, we employ the SBN (or RBM). In the following we start by describing a

single-layer model with SBN (or RBM), and then we generalize it to a deep model.

Modeling with the SBN We assume the latent vector for document n, h
p1q
n P t0, 1uK1 .

This matches most of the RBM and SBN literature, for which typically the observed

data are binary. In our model, however, these binary variables are not observed; they

are hidden and related to the data through the PFA in (3.2).

To construct a structured prior, we define another hidden set of units h
p2q
n P

t0, 1uK2 placed at a layer “above” h
p1q
n . The layers are related through a set of

weights defined by the matrix Wp1q “ rw
p1q
1 . . . w

p1q
K1
sJ P RK1ˆK2 . An SBN model

has the generative process,

pph
p2q
k2n
“ 1q “ σpc

p2q
k2
q , (3.3)

pph
p1q
k1n
“ 1|hp2qn q “ σ

´

pw
p1q
k1
q
Jhp1qn ` c

p1q
k1

¯

, (3.4)

where h
p1q
k1n

and h
p2q
k2n

are elements of h
p1q
n and h

p2q
n , respectively. The function σpxq fi

1{p1`e´xq is the logistic function, and c
p1q
k1

and c
p2q
k2

are bias terms. The global param-

eters Wp1q are used to characterize the mapping from h
p2q
n to h

p1q
n for all documents.

Modeling with the RBM The SBN is closely related to the RBM, which is a Markov

random field with the same bipartite structure as the SBN. The RBM defines a

distribution over a binary vector that is proportional to the exponential of its energy,

42



defined (using the same notation as in SBN) as

Ephp1qn ,hp2qn q “ ´ph
p1q
n q

Jcp1q ´ php1qn q
JWp1qhp2qn ´ php2qn q

Jcp2q . (3.5)

In the experiments we consider both the deep SBN and deep RBM for representation

of the latent binary units, which are connected to topic usage in a given document.

Remark An important benefit of SBNs over RBMs is that in the former sparsity or

shrinkage priors can be readily imposed on the global parameters Wp1q, and fully

Bayesian inference can be implemented as shown in Gan et al. (2015c). The RBM

relies on an approximation technique known as contrastive divergence (Hinton, 2002),

for which prior specification for model parameters is limited.

3.2.3 Deep Architecture for Topic Modeling

Specifying a prior distribution on h
p2q
n as in (3.3) might be too restrictive in some

cases. Alternatively, we can use another SBN prior for h
p2q
n , in fact, we can add

multiple layers as in Gan et al. (2015c) to obtain a deep architecture,

pph
p1q
n , . . . ,h

pLq
n q “ pph

pLq
n q

śL
`“2 pph

p`´1q
n |h

p`q
n q, (3.6)

where L is the number of layers, pph
pLq
n q is the prior for the top layer defined as

in (3.3), pph
p`´1q
n |h

p`q
n q is defined as in (3.4), and the weights Wp`q P RK`ˆK``1 and

biases cp`q P RK` are omitted from the conditional distributions to keep notation un-

cluttered. A similar deep architecture may be designed for the RBM (Salakhutdinov

and Hinton, 2009a).

Instead of employing the beta-Bernoulli specification for h
p1q
n as in the NB-FTM,

which assumes independent topic usage probabilities, we propose using (3.6) instead

as the prior for h
p1q
n , thus

ppxn,hnq “ ppxn|h
p1q
n qpph

p1q
n , . . . ,hpLqn q , (3.7)

43



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Scalable Deep Poisson Factor Analysis for Topic Modeling

In the experiments we consider both the deep SBN and
deep RBM for representation of the latent binary units,
which are connected to topic usage in a given document.

Discussion An important benefit of SBNs over RBMs
is that in the former sparsity or shrinkage priors can be
readily imposed on the global parameters W(1), and fully
Bayesian inference can be implemented as shown in Gan
et al. (2015). The RBM relies on an approximation tech-
nique known as contrastive divergence (Hinton, 2002), for
which prior specification for the model parameters is lim-
ited.

2.3. Deep Architecture for Topic Modeling

Specifying a prior distribution onh(2)
n as in (3) might be too

restrictive in some cases. Alternatively, we can use another
SBN prior for h(2)

n , in fact, we can add multiple layers as
in Gan et al. (2015) to obtain a deep architecture,

p(h(1)
n , . . . ,h(L)

n ) = p(h(L)
n )

∏L
`=2 p(h

(`−1)
n |h(`)

n ), (6)

where L is the number of layers, p(h(L)
n ) is the prior for the

top layer defined as in (3), p(h(`−1)
n |h(`)

n ) is defined in (4),
and the weights W(`) ∈ RK`×K`+1 and biases c(`) ∈ RK`

are omitted from the conditional distributions to keep no-
tation uncluttered. A similar deep architecture may be de-
signed for the RBM (Salakhutdinov & Hinton, 2009b).

Instead of employing the beta-Bernoulli specification for
h(1)
n as in the NB-FTM, which assumes independent topic

usage probabilities, we propose using (6) instead as the
prior for h(1)

n , thus

p(xn,hn) = p(xn|h(1)
n )p(h(1)

n , . . . ,h(L)
n ) , (7)

where hn , {h(1)
n , . . . ,h(L)

n }, and p(xn|h(1)
n ) as in (2).

The prior p(h(1)
n |h(2)

n . . . ,h(L)
n ) can be seen as a flexible

prior distribution over binary vectors that encodes high-
order interactions across elements of h(1)

n . The graphi-
cal model for our model, Deep Poisson Factor Analysis
(DPFA) is shown in Figure 1.

3. Scalable Posterior Inference
We focus on learning our model with fully Bayesian al-
gorithms, however, emerging large-scale corpora prohibit
standard MCMC inference algorithms to be applied di-
rectly. For example, in the experiments, we consider the
RCV1-v2 and the Wikipedia corpora, which contain about
800K and 10M documents, respectively. Therefore, fast
algorithms for big Bayesian learning are essential. While
parallel algorithms based on distributed architectures such
as the parameter server (Ho et al., 2013; Li et al., 2014)
are popular choices, in the work presented here, we focus

h(1)
n

h(2)
n

h(3)
n

xn

θn

W(1)

W(2)

rk

φk

γ0

aφ

n=1,...,Nk=1,...,K

Figure 1. Graphical model for the Deep Poisson Factor Analysis
with three layers of hidden binary hierarchies. The directed binary
hierarchy may be replaced by a deep Boltzmann machine.

on another direction for scaling up inference by stochas-
tic algorithms, where mini-batches instead of the whole
dataset are utilized in each iteration of the algorithms.
Specifically, we develop two stochastic Bayesian inference
algorithms based on Bayesian conditional density filter-
ing (Guhaniyogi et al., 2014) and stochastic gradient ther-
mostats (Ding et al., 2014), both of which have theoretical
guarantees in the sense of asymptotical convergence to the
true posterior distribution.

3.1. Bayesian conditional density filtering

Bayesian conditional density filtering (BCDF) is a re-
cently proposed stochastic algorithm for Bayesian online
learning (Guhaniyogi et al., 2014), that extends Markov
chain Monte Carlo (MCMC) sampling to streaming data.
Sampling in BCDF proceeds by drawing from the condi-
tional posterior distributions of model parameters, obtained
by propagating surrogate conditional sufficient statistics
(SCSS). In practice, we repeatedly update the SCSS using
the current mini-batch and draw S samples from the condi-
tional densities using, for example, a Gibbs sampler. This
eliminates the need to load the entire dataset into mem-
ory, and provides computationally cheaper Gibbs updates.
More importantly, it can be proved that BCDF leads to an
approximation of the conditional distributions that produce
samples from the correct target posterior asymptotically,
once the entire dataset is seen (Guhaniyogi et al., 2014).

In the learning phase, we are interested in learning the
global parameters Ψg = ({φk}, {rk}, γ0, {W(`), c(`)}).
Denote local variables as Ψl = (Θ,H(`)), and let Sg rep-
resent the SCSS for Ψg , the BCDF algorithm can be sum-
marized in Algorithm 1. Specifically, we need to obtain the
conditional densities, which can be readily derived granted
the full local conjugacy of the proposed model. Using dot
notation to represent marginal sums, e.g., x·nk ,

∑
p xpnk,

we can write the key conditional densities for (2) as (Zhou
& Carin, 2015)

Figure 3.1: Graphical model for the Deep Poisson Factor Analysis with three layers
of hidden binary hierarchies.

where hn fi th
p1q
n , . . . ,h

pLq
n u, and ppxn|h

p1q
n q as in (3.2). The prior pph

p1q
n |h

p2q
n . . . ,h

pLq
n q

can be seen as a flexible prior distribution over binary vectors that encodes high-order

interactions across elements of h
p1q
n . The graphical model for our model, Deep Poisson

Factor Analysis (DPFA) is shown in Figure 3.1. The directed binary hierarchy may

be replaced by a deep Boltzmann machine.

3.3 Scalable Posterior Inference

We focus on learning our model with fully Bayesian algorithms, however, emerging

large-scale corpora prohibit standard MCMC inference algorithms to be applied di-

rectly. For example, in the experiments, we consider the RCV1-v2 and the Wikipedia

corpora, which contain about 800K and 10M documents, respectively. Therefore, fast

algorithms for big Bayesian learning are essential. While parallel algorithms based

on distributed architectures such as the parameter server (Ho et al., 2013; Li et al.,

2014) are popular choices, in the work presented here, we focus on another direc-

tion for scaling up inference by stochastic algorithms, where mini-batches instead of

the whole dataset are utilized in each iteration of the algorithms. Specifically, we

develop two stochastic Bayesian inference algorithms based on Bayesian conditional

44



Algorithm 1 BCDF algorithm for DPFA.
Input: text documents, i.e., a count matrix X.

Initialize Ψ
p0q
g randomly and set S

p0q
g all to zero.

for t “ 1 to 8 do
Get one mini-batch Xptq.
Initialize Ψ

ptq
g “ Ψ

pt´1q
g , and S

ptq
g “ S

pt´1q
g .

Initialize Ψ
ptq
l randomly.

for s “ 1 to S do
Gibbs sampling for DPFA on Xptq.
Collect samples Ψ1:S

g ,Ψ1:S
l and S1:S

g .
end for
Set Ψ

ptq
g “ meanpΨ1:S

g q, and S
ptq
g “ meanpS1:S

g q.
end for

density filtering (Guhaniyogi et al., 2014) and stochastic gradient thermostats (Ding

et al., 2014), both of which have theoretical guarantees in the sense of asymptotical

convergence to the true posterior distribution.

3.3.1 Bayesian conditional density filtering

Bayesian conditional density filtering (BCDF) is a recently proposed stochastic al-

gorithm for Bayesian online learning (Guhaniyogi et al., 2014), that extends Markov

chain Monte Carlo (MCMC) sampling to streaming data. Sampling in BCDF pro-

ceeds by drawing from the conditional posterior distributions of model parameters,

obtained by propagating surrogate conditional sufficient statistics (SCSS). In prac-

tice, we repeatedly update the SCSS using the current mini-batch and draw S sam-

ples from the conditional densities using, for example, a Gibbs sampler. This elimi-

nates the need to load the entire dataset into memory, and provides computationally

cheaper Gibbs updates. More importantly, it can be proved that BCDF leads to an

approximation of the conditional distributions that produce samples from the correct

target posterior asymptotically, once the entire dataset is seen (Guhaniyogi et al.,

2014).

In the learning phase, we are interested in learning the global parameters Ψg “

45



ptφku, trku, γ0, tW
p`q, cp`quq. Denote local variables as Ψl “ pΘ,Hp`qq, and let Sg

represent the SCSS for Ψg, the BCDF algorithm can be summarized in Algorithm 1.

Specifically, we need to obtain the conditional densities, which can be readily derived

granted the full local conjugacy of the proposed model. Using dot notation to repre-

sent marginal sums, e.g., x¨nk fi
ř

p xpnk, we can write the key conditional densities

for (3.2) as (Zhou and Carin, 2015)

xpnk|´ „ Multipxpn; ζpn1, . . . , ζpnKq , (3.8)

φk|´ „ Dirpaφ ` x1¨k, . . . , aφ ` xP ¨kq , (3.9)

θkn|´ „ Gammaprkh
p1q
kn ` x¨nk, pnq , (3.10)

h
p1q
kn |´ „ δpx¨nk “ 0qBer

´

π̃kn
π̃kn`p1´πknq

¯

` δpx¨nk ą 0q , (3.11)

where π̃kn “ πknp1 ´ pnq
rk , πkn “ σppw

p1q
k q

Jh
p2q
n ` c

p1q
k q, and ζpnk9φpkθkn. Addi-

tional details are provided in Section 3.7.1. For the conditional distributions of

Wp`q and Hp`q, we use the same data augmentation technique as in Gan et al.

(2015c), where Pólya-Gamma (PG) variables γ
p`q
k`n

(Polson et al., 2013b) are intro-

duced for hidden unit k` in layer ` corresponding to observation vn. Specifically,

each γ
p`q
k`n

has conditional posterior PGp1, pw
p`q
k`
qJh

p``1q
n ` c

p`q
k`
q. If we place a Gaus-

sian prior Np0, σ2Iq on w
p`q
k`

, the posterior will still be Gaussian with covariance

matrix Σ
p`q
k`
“ r

ř

n γ
p`q
k`n
h
p``1q
n ph

p``1q
n qJ ` σ´2Is´1 and mean µ

p`q
k`
“ Σ

p`q
k`
r
ř

nph
p`q
k`n
´

1{2´ c
p`q
k`
γ
p`q
k`n
qh
p``1q
n s. Furthermore, for ` ą 1, the conditional distribution of h

p`q
k`n

can

be obtained as1

h
p`q
k`n
„ Bernoulli pσpdk`nqq , (3.12)

1 Here and in the rest of the paper, whenever ` ą L, h
p`q
n is defined as a zero vector, for conciseness.

46



where

dk`n “ pw
p`´1q
¨,k`

q
Jhp`´1qn ` pw

p`q
k`
q
Jhp``1qn ` c

p`q
k`

(3.13)

´
1

2

ÿ

k`´1

´

w
p`´1q
k`´1k`

` γ
p`´1q
k`´1n

p2ψ
zk`
k`´1n

w
p`´1q
k`´1k`

` pw
p`´1q
k`´1k`

q
2
q

¯

, (3.14)

and ψ
zk`
k`´1n

“
ř

k1`‰k`
w
p`´1q

k`´1k
1
`
h
p`q

k1`n
` c

p`´1q
k`´1

. Note that w
p`q
¨,k``1

and w
p`q
k`

represents the

k``1th column and the transpose of the k`th row of Wp`q, respectively. As can be

seen, the conditional posterior distribution of h
p`q
k`n

is both related to h
p`´1q
n and h

p``1q
n .

3.3.2 Stochastic gradient thermostats

Our second learning algorithm adopts the recently proposed SGNHT for large scale

Bayesian sampling (Ding et al., 2014), which is more scalable and accurate than

the previous BCDF algorithm. SGNHT generalizes the stochastic gradient Langevin

dynamics (SGLD) (Welling and Teh, 2011) and the stochastic gradient Hamiltonian

Monte Carlo (SGHMC) (Chen et al., 2014b) by introducing momentum variables

into the system, which is adaptively damped using a thermostat. The thermostat

exchanges energy with the target system (e.g., a Bayesian model) to maintain a

constant temperature; this has the potential advantage of making the system jump

out of local modes easier and reach the equilibrium state faster (Ding et al., 2014).

Specifically, let Ψg P RM be model parameters2 which corresponds to the location

of particles in a physical system, v P RM be the momentum of these particles, which

are driven by stochastic forces f̃ defined as the negative stochastic gradient (evaluated

on a subset of data) of a Bayesian posterior, e.g., f̃pΨgq fi ´∇Ψg ŨpΨgq, where ŨpΨgq

is the negative log-posterior of a Bayesian model. The motion of the particles in the

2 With a little abuse of notation but for conciseness, we use Ψg to denote the reparameterized
version of the parameters (such that Ψg P RM ) if any, required in SGNHT.

47



system are then defined by the following stochastic differential equations:

dΨg “ vdt , dv “ f̃pΨgqdt´ ξvdt`
?
DdW ,

dξ “
`

1
M
vJv ´ 1

˘

dt , (3.15)

where t indexes time, W is the standard Wiener process, ξ is called the thermostat

variable which ensures the system temperature to be constant, and D is the variance

of the total noise injected into the system and is assumed to be constant.

It can be shown that under certain assumptions, the equilibrium distribution of

system (3.15) corresponds to the model posterior (Ding et al., 2014). As a result, the

SDE (3.15) can be solved by using the Euler-Maruyama scheme (Tuckerman, 2010),

where a mini-batch of the whole data is used to evaluate the stochastic gradient

f̃ . Note only one thermostat variable ξ is used in the SDE system (3.15); this

is not robust enough to control the system temperature well because of the high

dimensionality of Ψg. Based on the techniques in Ding et al. (2014), we extend the

SGNHT by introducing multiple thermostat variables pξ1, ¨ ¨ ¨ , ξMq into the system

such that each ξi controls one degree of the particle momentum. Intuitively, this

allows energy to be exchanged between particles and thermostats more efficiently,

thus driving the system to equilibrium states more rapidly. Empirically we have

also verified the superiority of the proposed modification over the original SGNHT.

Formally, let Ξ “ diagpξ1, ξ2, ¨ ¨ ¨ , ξMq, q “ diagpv21, ¨ ¨ ¨ , v
2
Mq, we define our proposed

SGNHT using the following SDEs

dΨg “ vdt , dv “ f̃pΨgqdt´Ξvdt`
?
DdW ,

dΞ “ pq´ Iq dt , (3.16)

where I is the identity matrix. Interestingly, we are still able to prove that the

equilibrium distribution of the above system corresponds to the model posterior.

48



Theorem 1. The equilibrium distribution of the SDE system in (3.16) is

ppΨg,v,Ξq9 exp

ˆ

´
1

2
vJv ´ UpΨgq ´

1

2
tr
!

pΞ´DqJ pΞ´Dq
)

˙

. (3.17)

By Theorem 1, it is straightforward to see that the marginal distribution ppΨgq of

ppΨg, ~v,Ξq is exactly the posterior of our Bayesian model. As a result, again we can

generate approximate samples from ppΨg, ~v,Ξq using the Euler-Maruyama scheme

and discard the auxiliary variables ~v and Ξ.

Learning for the SBN-based model Our SBN-based model is illustrated in Figure 3.1.

In the learning phase we are interested in learning the global parameters Ψg, the

same as in BCDF. The constraints inside the parameters tφku, i.e.,
ř

p φpk “ 1,

prevent the SGNHT from being applied directly. Although we can overcome this

problem by using re-parameterization methods as in Patterson and Teh (2013), we

find it converges better when considering information geometry for these parameters.

As a result, we use stochastic gradient Riemannian Langevin dynamics (SGRLD)

(Patterson and Teh, 2013) to sample the topic-word distributions tφku, and use the

SGNHT to sample the remaining parameters. Based on the data augmentation for

xpn above, Section 3.3.1 shows that the posteriors of tφku’s are Dirichlet distributions.

This enables us to apply the same scheme as the SGRLD for LDA (Patterson and

Teh, 2013) to sample tφku’s.

The rest of the parameters can be straightforwardly sampled using the SGNHT

algorithm. Specifically we need to calculate the stochastic gradients of Wp`q and cp`q

evaluated on a mini-batch of data (denote D as the index set of a mini-batch). Based

49



on the model definition in (3.6), these can be calculated as

BŨ

Bw
p`q
k`

“
N

|D|
ÿ

nPD
E
h
p`q
n ,h

p``1q
n

”´

σ̃
p`q
k`n
´ h

p`q
k`n

¯

hp``1qn

ı

, (3.18)

BŨ

Bc
p`q
k`

“
N

|D|
ÿ

nPD
E
h
p`q
n ,h

p``1q
n

”

σ̃
p`q
k`n
´ h

p`q
k`n

ı

, (3.19)

where σ̃
p`q
k`n
“ σppw

p`q
k`
qJh

p``1q
n `c

p`q
k`
q, and the expectation is taken over posteriors. As

in the case of LDA (Patterson and Teh, 2013), no closed-form integrations can be

obtained for the above gradients, we thus use Monte Carlo integration to approximate

the quantity. Specifically, given tw
p`q
k`
, c
p`q
k`
u, we are able to collect samples of the

local variables ph
p`q
n qnPD by running a few Gibbs steps and then using these samples

to approximate the intractable integrations. Exact conditional distributions for h
p`q
k`n

exist without variable augmentation, however, we found that this approach does not

mix well due to the highly correlated structure of hidden variables. Instead, we

sample h
p`q
k`n

based on the same augmentation used in BCDF, given in (3.12).

Learning for the RBM-based model As mentioned above, our RBM-based model is

recovered when replacing the SBN with the RBM in Figure 3.1. Despite minor

changes in the construction, the intractable normalizer which consists of model pa-

rameters (e.g., Wp`q) prohibits exact MCMC sampling from being applied. As a

result, we develop an approximate learning algorithm that alternates between sam-

pling ptφku, tγku, γ0uq and ptWp`q, cp`quq. Specifically, we use the same conditional

posteriors as in the SBN-based model to sample the former, but use the contrastive

divergence algorithm (CD-1) (Hinton, 2002) for the latter. One main difference of

our CD-1 algorithm w.r.t the original one is that the inputs (i.e., h
p1q
n ) are hid-

den variables. To make the CD-1 work, conditioned on other model parameters,

we first sample h
p1q
n using the posterior given in Section 3.3.1, then conditioned on

50



h
p1q
n , we apply the original CD-1 algorithm to calculate the approximate gradients for

ptWp`q, cp`quq, which are then used for a gradient descent step in SGNHT. In fact, the

CD-1 is also a stochastic approximate algorithm, discussed in Yuille (2005), making

it naturally fit into our SGNHT framework.

3.3.3 Discussion

Both the BCDF and SGNHT are stochastic inference algorithms, allowing the models

to be applied to large-scale data. In terms of ease of implementation, BCDF beats

SGNHT in most cases, especially when the model is conjugate and the domain of

parameters is constrained (e.g., variables on a simplex). However, in general BCDF is

more restrictive than SGNHT. For example, BCDF prefers the conditional densities

for all the parameters, which is unavailable in some cases. Furthermore, BCDF has

the limitation of being unable to deal with some big models where the number of

model parameters is large, for instance, when the dimension of the hidden variables

from the SBN in our model is huge. Finally, the conditions for BCDF to converge

to the true posterior are more restricted. Altogether, these reasons make SGNHT

more robust than BCDF.

3.4 Related Work

In traditional Bayesian topic models, topic correlations are typically modeled with

shallow structures, e.g., the correlated topic model (Blei and Lafferty, 2007) with

correlation between topic proportions imposed via the logistic normal distribution.

There exist also some work on hierarchical (“deep”) correlation modeling, e.g., the

hierarchical Dirichlet process (Teh et al., 2006), which models topic proportions

hierarchically via a stack of DPs. The nested Chinese restaurant process (Blei et al.,

2004) (nCRP) models topic hierarchies by defining a tree structure prior based on

the Chinese restaurant process, and the nested hierarchical Dirichlet process (Paisley

51



et al., 2015) extends the nCRP by allowing each document to be able to access all the

paths in the tree. One major difference between these models and ours is that they

focus on discovering topic hierarchies instead of modeling general topic correlations.

In the deep learning community, topic models are mostly built using the RBM as

a building block. For example, Hinton and Salakhutdinov (2011) and Maaloe et al.

(2015) extended the DBN for topic modeling, while a deep version of the RSM was

proposed by Srivastava et al. (2013). More recent work focuses on employing deep

directed generative models for topic modeling, e.g., deep exponential families (Ran-

ganath et al., 2015), a class of latent variable models extending the DBN by defining

the distribution of hidden variables in each layer using the exponential family, instead

of the restricted Bernoulli distribution.

In terms of learning and inference algorithms, most of existing Bayesian topic

models rely on MCMC methods or variational Bayes algorithms, which are imprac-

tical when dealing with large scale data. Therefore, stochastic variational inference

algorithms have been developed (Hoffman et al., 2010; Mimno et al., 2012; Wang

and Blei, 2012; Hoffman et al., 2013b). Although scalable and usually fast converg-

ing, one unfavorable shortcoming of stochastic variational inference algorithms is the

mean-field assumption on the approximate posterior.

Another direction for scalable Bayesian learning relies on the theory from stochas-

tic differential equations (SDE). Specifically, Welling and Teh (2011) proposed the

first stochastic MCMC algorithm, called stochastic gradient Langevin dynamics (SGLD),

for large scale Bayesian learning. In order to make the learning faster, Patterson and

Teh (2013) generalized SGLD by considering information geometry (Girolami and

Calderhead, 2011; Byrne and Girolami, 2013) of model posteriors. Furthermore,

Chen et al. (2014b) generalized the SGLD by a second-order Langevin dynamic,

called stochastic gradient Hamiltonian Monte Carlo (SGHMC). This is the stochastic

version of the well known Hamiltonian MCMC sampler. One problem with SGHMC

52



is that the unknown stochastic noise needs to be estimated to make the sampler

correct, which is impractical. Stochastic gradient thermostats algorithms (SGNHT)

overcome this problem by introducing the thermostat into the algorithm, such that

the unknown stochastic noise could be adaptively absorbed into the thermostat,

making the sampler asymptotically exact. Given the advantages of the SGNHT, in

this paper we extend it to a multiple thermostats setting, where each thermostat

exchanges energy with a degree of freedom of the system. Empirically we show that

our extension improves on the original algorithm.

Since the publication of this paper, some more advanced modeling approaches

have been proposed, including deep Poisson factor modeling (Henao et al., 2015,

2016), Poisson gamma belief network (Zhou et al., 2015, 2016), deep latent Dirichlet

allocation (Cong et al., 2017), and topic compositional neural language model (Wang

et al., 2017).

3.5 Experiments

3.5.1 Datasets and Setups

We present experimental results on three publicly available corpora: a relatively

small, 20 Newsgroups, a moderately large, Reuters Corpus Volume I (RCV1-v2 ), and

a large one, Wikipedia. The first two corpora are the same as those used in Srivas-

tava et al. (2013). Specifically, the 20 Newsgroups corpus contains 18,845 documents

with a total of 0.7M words and a vocabulary size of 2K. The data was partitioned

chronologically into 11,314 training and 7,531 test documents. The RCV1-v2 corpus

contains 804,414 newswire articles. There are 103 topics that form a tree hierarchy.

After preprocessing, we are left with about 75M words, with a vocabulary size of

10K. We randomly select 794,414 documents for training and 10,000 for testing. Fi-

nally, we downloaded 10M random documents from Wikipedia using scripts provided

in Hoffman et al. (2010) and randomly selected 1K documents for testing. As in

53



Hoffman et al. (2010); Patterson and Teh (2013), a vocabulary size of 7,702 was

taken from the top 10K words in Project Gutenberg texts.

The DPFA model consisting of SBN is denoted as DPFA-SBN, while its RBM

counterpart is denoted DPFA-RBM. The performance of DPFA is compared to that

of the following models: LDA (Blei et al., 2003), NB-FTM (Zhou and Carin, 2015),

nHDP (Paisley et al., 2015) and RSM (Salakhutdinov and Hinton, 2009b).

For all the models considered, we calculate the predictive perplexities on the test

set as follows: holding the global model parameters fixed, for each test document we

randomly partition the words into a 80/20% split. We learn document-specific “local”

parameters using the 80% portion, and then calculate the predictive perplexities on

the remaining 20% subset. Evaluation details are provided in Section 3.7.2.

For 20 Newsgroups and RCV1-v2 corpora, we use 2,000 mini-batches for burn-

in followed by 1,500 collection samples to calculate test perplexities; while for the

Wikipedia dataset, 3,500 mini-batches are used for burn-in. The mini-batch size

for all stochastic algorithms is set to 100. To choose good parameters for SGNHT,

e.g., the step size and the variance of the injected noise, we randomly choose about

10% documents from the training data as validation set. For BCDF, 100 MCMC

iterations are evaluated for each mini-batch, with the first 60 samples discarded. We

set the hyperparameters of DPFA as aφ “ 1.01, c0 “ e0 “ 1, f0 “ 0.01, and pn “ 0.5.

The RSM is trained using convergence-divergence with step size 5 and a maximum

of 10,000 iterations. For nHDP, we use the publicly available code from Paisley et al.

(2015), in which stochastic variational Bayes (sVB) inference is implemented.

3.5.2 Quantitative Evaluation

20 Newsgroups The results for the 20 Newsgroups corpus are shown in Table 3.1.

Perplexities are reported for our implementation of Gibbs sampling, BCDF and

SGNHT, and the four considered competing methods. “Dim” represents the number

54



0 300 600 900 1200 1500
840

860

880

900

920

940

960

980

1000

Iteration Number

P
er

pl
ex

ity

 

 

LDA
NB−FTM
DPFA−SBN (Gibbs)
DPFA−SBN (BCDF)
DPFA−SBN (SGNHT)
DPFA−RBM (SGNHT)

200K 230K 260K 290K 320K 350K
800

900

1000

1100

1200

1300

1400

1500

1600

#Documents Seen

P
e
rp

le
x
it
y

350K 380K 410K 440K 470K 500K
850

900

950

1000

1050

1100

1150

1200

#Documents Seen

P
er

pl
ex

ity

Figure 3.2: Predictive perplexities on the test set as a function of training docu-
ments seen. (Left) 20 News. (Middle) RCV1-v2. (Right) Wikipedia.

Table 3.1: Test perplexities for 20 Newsgroups.

Model Method Dim Perp.

DPFA-SBN-t Gibbs 128-64-32 827
DPFA-SBN Gibbs 128-64-32 846
DPFA-SBN SGNHT 128-64-32 846
DPFA-RBM SGNHT 128-64-32 896
DPFA-SBN BCDF 128-64-32 905

DPFA-SBN Gibbs 128-64 851
DPFA-SBN SGNHT 128-64 850
DPFA-RBM SGNHT 128-64 893
DPFA-SBN BCDF 128-64 896

LDA Gibbs 128 893
NB-FTM Gibbs 128 887
RSM CD5 128 877
nHDP sVB (10,10,5)˛ 889

of hidden units in each layer, starting from the bottom. DPFA-SBN-t represents

the DPFA-SBN model with Student’s t prior on Wp`q. p˛q represents the base tree

size in nHDP. First, we examine the performance of different inference algorithms.

As can be seen, for the same size model, e.g., 128-64-32 (128 topics and 32 binary

nodes on the top of the three-layer model), SGNHT can achieve essentially the same

performance as Gibbs sampling, while BCDF is more likely to get trapped in a

local mode. Next, we explore the advantage of employing deep models. Using three

layers instead of two gives performance improvements in almost all the algorithms.

In Gibbs sampling, there is an improvement of 36 units for the DPFA-SBN model,

when a second layer is learned (NB-FTM is the one-hidden-layer DPFA). Adding the

55



Table 3.2: Test perplexities on RCV1-v2 and Wikipedia.

Model Method Dim RCV Wiki

DPFA-SBN SGNHT 1024-512-256 964 770
DPFA-SBN SGNHT 512-256-128 1073 799

DPFA-SBN SGNHT 128-64-32 1143 876
DPFA-RBM SGNHT 128-64-32 920 942
DPFA-SBN BCDF 128-64-32 1149 986

LDA BCDF 128 1179 1059
NB-FTM BCDF 128 1155 991
RSM CD5 128 1171 1001
nHDP sVB (10,5,5) 1041 932

third hidden layer further improves the test perplexity.

Adding a sparsity-encouraging prior on Wp`q acts as a more stringent regular-

ization that prevents overfitting, when compared with the commonly used L2 norm

(Gaussian prior). Furthermore, shrinkage priors have the effect of being able to ef-

fectively switch off the elements of Wp`q, which benefits interpretability and helps

to infer the number of units needed to represent the data. In our experiment, we

observe that the DPFA-SBN model with the Student’s t prior on Wp`q achieves a

better test perplexity when compared with its counterpart without shrinkage.

RCV1-v2 & Wiki We present results for the RCV1-v2 and Wikipedia corpora in

Table 3.2. Direct Gibbs sampling in such a (big-data) setting is prohibitive, and is

thus not discussed. First, we explore the effect of utilizing a larger deep network.

For our DPFA-SBN model using the SGNHT algorithm, we observe that making the

network 8 time larger in each hidden layer decreases the test perplexities by 155 and

84 units on RCV1-v2 and Wikipedia, respectively. This demonstrates the ability of

our stochastic inference algorithm to scale up both in terms of model and corpus

size.

Both SBN and RBM can be utilized as the building block in our deep specifica-

tion. For the RCV1-v2 corpus, our best result is obtained by utilizing a three-layer

56



1.8 2 2.2 2.4 2.6

x 10
5

800

900

1000

1100

1200

1300

1400

#Docs Seen

P
e
rp

le
x
it
y

 

 

Batch_1
Batch_10
Batch_30
Batch_50
Batch_80
Batch_100

2 2.05 2.1 2.15

x 10
5

1500

2000

2500

3000

#Docs Seen

P
e
rp

le
x
it
y

 

 

Batch_10
Batch_50
Batch_80
Batch_100

3.5 3.55 3.6 3.65 3.7

x 10
5

1000

1200

1400

1600

#Docs Seen

P
e
rp

le
x
it
y

 

 

Batch_10
Batch_30
Batch_50
Batch_80
Batch_100

Figure 3.3: Test perplexities w.r.t. mini-batch sizes on the three corpora. (Left)
20 Newsgroups. (Middle) RCV1-v2. (Right) Wikipedia.

2 4 6 8 10 12

x 10
5

1200

1400

1600

1800

2000

#Docs Seen

P
er

pl
ex

ity

0.5 1 1.5 2 2.5 3

x 10
6

800

900

1000

1100

1200

#Docs Seen

P
er

pl
ex

ity

Figure 3.4: Test perplexities as a function of training documents seen. (Left)
RCV1-v2. (Right) Wikipedia.

deep Boltzmann machine. However, for the 20 Newsgroups and Wikipedia corpora,

with the same size model, we found empirically that the deep SBN achieves better

performance.

Compared with nHDP, our DPFA models define a more flexible prior on topic

interactions, and therefore in practice we also consistently achieve better perplexity

results. We further show test perplexities as a function of documents processed

during model learning in Figure 3.2. The number of hidden units in each layer is

128, 64, 32, respectively. As can be seen, performance smoothly improves as the

amount of data processed increases.

57



Figure 3.5: Top words from the 30 topics corresponding to the graph in Figure 3.6,
learned by DPFA-SBN from the 20Newsgroup corpus.

3.5.3 Sensitivity analysis

We examined the sensitivity of the model performance with respect to batch sizes in

SGNHT on the three corpora considered. The results are shown in Figure 3.3. We

found that overall performance, both convergence speed and test perplexity, suffer

considerably when the batch size is smaller than 10 documents. However, for batch

sizes larger than 50 (100 for RCV1-v2) we obtain performances comparable to those

shown in Tables 3.1 and 3.2.

We run the SGNHT algorithm on the RCV1-v2 and Wikipedia datasets long

enough so that the whole corpora can be traversed. The results are shown in Figure

3.4. As can be seen, performance smoothly improves as the amount of data processed

increases.

3.5.4 Visualization

We can obtain a visual representation of the topic structure implied by the deep

component of our DPFA model by computing correlations between topics using

the weight matrices, Wp`q, learned by DPFA-SBN, i.e, we evaluate the covariance

Wp1qWp2qpWp1qWp2qqJ, then scale it accordingly. Figure 3.6 shows a graph for a

subset of 30 topics (nodes), where edge thickness encodes correlation coefficients and

58



Figure 3.6: Graphs induced by the correlation structure learned by DPFA-SBN for
the 20 Newsgroups.

we have chosen, to ease visualization, to show only coefficients larger than 0.85. Each

node represents a topic with top words shown in Figure 3.5. In addition, Figure 3.5

shows the top words for each topic depicted in Figure 3.6. We see three very in-

teresting subgraphs representing different categories, namely, sports, computers and

politics/law.

3.6 Discussion

We have presented the Deep Poisson Factor Analysis model, an extension of PFA,

that models the high-order interactions between topics, via a deep binary hierar-

chical structure, employing SBNs and RBMs. To address large-scale datasets, two

stochastic Bayesian learning algorithms were developed. Experimental results on

several corpora show that the proposed approach obtains superior test perplexities

and reveals interesting topic structures.

While this work has focused on unsupervised topic modeling, one can extend the

model into a supervised version by joint modeling of the text with associated labels

via latent binary features as in Zhang and Carin (2012). Furthermore, as mentioned

in Section 4.5, global-local shrinkage priors (Polson and Scott, 2012) will encourage

a large proportion of the elements of Wp`q to be shrunk close to zero. By setting the

59



number of hidden units to a reasonably large value, this provides a natural way to

let the model select automatically the number of features actually needed.

3.7 Supplementary Material

3.7.1 Conditional Densities used in BCDF

Using dot notation to represent marginal sums, e.g., x¨nk fi
ř

p xpnk, we can write

the conditional densities for DPFA as (Zhou and Carin, 2015)

xpnk|´ „ Multipxpn; ζpn1, . . . , ζpnKq , (3.20)

φk|´ „ Dirpaφ ` x1¨k, . . . , aφ ` xP ¨kq ,

θkn|´ „ Gammaprkh
p1q
kn ` x¨nk, pnq ,

rk|´ „ Gamma

˜

γ0 `
N
ÿ

n“1

lkn,
1

c0 ´
řN
n“1 h

p1q
kn lnp1´ pnq

¸

, (3.21)

γ0|´ „ Gamma

˜

e0 `
K
ÿ

k“1

l
1

k,
1

f0 ´
řK
k“1 lnp1´ p

1

kq

¸

, (3.22)

h
p1q
kn |´ „ δpx¨nk “ 0qBer

ˆ

πknp1´ pnq
rk

πknp1´ pnqrk ` p1´ πknq

˙

` δpx¨nk ą 0q ,

where

lkn|´ „ CRT
´

x¨nk, rkh
p1q
kn

¯

, l1k|´ „ CRT

˜

N
ÿ

n“1

lkn, γ0

¸

, (3.23)

ζpnk “
φpkθkn

řK
k“1 φpkθkn

, p1k “
´
řN
n“1 h

p1q
kn lnp1´ pnq

c0 ´
řN
n“1 h

p1q
kn lnp1´ pnq

, (3.24)

πkn “ σ
´

pw
p1q
k q

Jhp2qn ` c
p1q
k

¯

. (3.25)

CRT represents the Chinese Restaurant Table distribution. A CRT random vari-

able l „ CRTpm, rq can be generated with the summation of independent Bernoulli

60



random variables as (Zhou and Carin, 2015)

l “
m
ÿ

n“1

bn, bn „ Ber

ˆ

r

n´ 1` r

˙

. (3.26)

3.7.2 Evaluation Details on Perplexities

For each test document, we randomly partition the words into a 80/20% split. We

learn document-specific local parameters using the 80% portion, and then calculate

the predictive perplexities on the remaining 20% subset, denoted as Y. For the

PFA-based models, the test perplexity is calculated as (Zhou et al., 2012a)

exp

˜

´
1

y¨¨

P
ÿ

p“1

N
ÿ

n“1

ypn log

řS
s“1

řK
k“1 φ

s
pkθ

s
kn

řS
s“1

řP
p“1

řK
k“1 φ

s
pkθ

s
kn

¸

, (3.27)

where S is the total number of collected samples, y¨¨ “
řP
p“1

řN
n“1 ypn and ypn is an

element of matrix Y.

The conditional distribution of yn given hn, in the Replicated Softmax model

(RSM) is specified as

yn „ MultipDn;βnq , (3.28)

βpn “
exppwJp hn ` cpq

řP
p1“1 exppwJp1hn ` cp1q

, (3.29)

where yn is the nth column of Y, and Dn “
řP
p“1 ypn. W “ rw1, . . . .wP s

J P RPˆK

is the mapping from hn to yn, and c “ rc1, . . . .cP s
J P RPˆ1 is the bias term. Based

on this, the predictive test perplexity for RSM can be calculated as

exp

˜

´
1

y¨¨

P
ÿ

p“1

N
ÿ

n“1

ypn log βpn

¸

. (3.30)

61



4

Temporal Sigmoid Belief Networks for Sequence
Modeling

In this chapter, I will present temporal sigmoid belief networks for sequential data.

The proposed model is a sequential stack of sigmoid belief networks (SBNs). Each

SBN has a contextual hidden state, inherited from the previous SBNs in the sequence,

and is used to regulate its hidden bias. We show in the experiments that the proposed

model has the capacity to synthesize various sequences.

4.1 Introduction

Considerable research has been devoted to developing probabilistic models for high-

dimensional time-series data, such as video and music sequences, motion capture

data, and text streams. Among them, Hidden Markov Models (HMMs) (Rabiner

and Juang, 1986) and Linear Dynamical Systems (LDS) (Kalman, 1963) have been

widely studied, but they may be limited in the type of dynamical structures they can

model. An HMM is a mixture model, which relies on a single multinomial variable

to represent the history of a time-series. To represent N bits of information about

62



the history, an HMM could require 2N distinct states. On the other hand, real-world

sequential data often contain complex non-linear temporal dependencies, while a

LDS can only model simple linear dynamics.

Another class of time-series models, which are potentially better suited to model

complex probability distributions over high-dimensional sequences, relies on the use

of Recurrent Neural Networks (RNNs) (Hermans and Schrauwen, 2013; Martens

and Sutskever, 2011; Pascanu et al., 2013; Graves, 2013), and variants of a well-

known undirected graphical model called the Restricted Boltzmann Machine (RBM)

(Taylor et al., 2006; Sutskever and Hinton, 2007; Sutskever et al., 2009; Boulanger-

Lewandowski et al., 2012; Mittelman et al., 2014). One such variant is the Temporal

Restricted Boltzmann Machine (TRBM) (Sutskever and Hinton, 2007), which con-

sists of a sequence of RBMs, where the state of one or more previous RBMs determine

the biases of the RBM in the current time step. Learning and inference in the TRBM

is non-trivial. The approximate procedure used in Sutskever and Hinton (2007) is

heuristic and not derived from a principled statistical formalism.

Recently, deep directed generative models (Kingma and Welling, 2013; Mnih and

Gregor, 2014; Rezende et al., 2014; Gan et al., 2015c) are becoming popular. A

directed graphical model that is closely related to the RBM is the Sigmoid Belief

Network (SBN) (Neal, 1992). In the work presented here, we introduce the Temporal

Sigmoid Belief Network (TSBN), which can be viewed as a temporal stack of SBNs,

where each SBN has a contextual hidden state that is inherited from the previous

SBNs and is used to adjust its hidden-units bias. Based on this, we further develop

a deep dynamic generative model by constructing a hierarchy of TSBNs. This can

be considered as a deep SBN (Gan et al., 2015c) with temporal feedback loops on

each layer. Both stochastic and deterministic hidden layers are considered.

Compared with previous work, our model: (i) can be viewed as a generalization of

an HMM with distributed hidden state representations, and with a deep architecture;

63



(ii) can be seen as a generalization of a LDS with complex non-linear dynamics; (iii)

can be considered as a probabilistic construction of the traditionally deterministic

RNN; (iv) is closely related to the TRBM, but it has a fully generative process,

where data are readily generated from the model using ancestral sampling; (v) can

be utilized to model different kinds of data, e.g., binary, real-valued and counts.

The “explaining away” effect described in Hinton et al. (2006) makes inference

slow, if one uses traditional inference methods. Another important contribution

we present here is to develop fast and scalable learning and inference algorithms,

by introducing a recognition model (Kingma and Welling, 2013; Mnih and Gregor,

2014; Rezende et al., 2014), that learns an inverse mapping from observations to

hidden variables, based on a loss function derived from a variational principle. By

utilizing the recognition model and variance-reduction techniques from Mnih and

Gregor (2014), we achieve fast inference both at training and testing time.

4.2 Model Formulation

4.2.1 Temporal Sigmoid Belief Networks

The proposed Temporal Sigmoid Belief Network (TSBN) model is a sequence of

SBNs arranged in such way that at any given time step, the SBN’s biases depend

on the state of the SBNs in the previous time steps. Specifically, assume we have a

length-T binary visible sequence, the tth time step of which is denoted vt P t0, 1u
M .

The TSBN describes the joint probability as

pθpV,Hq “ pph1qppv1|h1q ¨

T
ź

t“2

ppht|ht´1,vt´1q ¨ ppvt|ht,vt´1q, (4.1)

where V “ rv1, . . . ,vT s, H “ rh1, . . . ,hT s, and each ht P t0, 1u
J represents the hid-

den state corresponding to time step t. For t “ 1, . . . , T , each conditional distribution

64



Figure 4.1: Graphical model for the Deep Temporal Sigmoid Belief Network.

in (4.1) is expressed as

pphjt “ 1|ht´1,vt´1q “ σpwJ1jht´1 `w
J
3jvt´1 ` bjq, (4.2)

ppvmt “ 1|ht,vt´1q “ σpwJ2mht `w
J
4mvt´1 ` cmq, (4.3)

where h0 and v0, needed for the prior model pph1q and ppv1|h1q, are defined as

zero vectors, respectively, for conciseness. The model parameters, θ, are specified as

W1 P RJˆJ , W2 P RMˆJ , W3 P RJˆM , W4 P RMˆM . For i “ 1, 2, 3, 4, wij is the

transpose of the jth row of Wi, and c “ rc1, . . . , cM s
J and b “ rb1, . . . , bJ s

J are bias

terms. The graphical model for the TSBN is shown in Figure 4.1(a).

By setting W3 and W4 to be zero matrices, the TSBN can be viewed as a Hidden

Markov Model (Rabiner and Juang, 1986) with an exponentially large state space,

that has a compact parameterization of the transition and the emission probabilities.

Specifically, each hidden state in the HMM is represented as a one-hot length-J

vector, while in the TSBN, the hidden states can be any length-J binary vector. We

note that the transition matrix is highly structured, since the number of parameters

is only quadratic w.r.t. J . Compared with the TRBM (Sutskever and Hinton, 2007),

our TSBN is fully directed, which allows for fast sampling of “fantasy” data from

65



the inferred model.

4.2.2 TSBN Variants

Modeling real-valued data The model above can be readily extended to model real-

valued sequence data, by substituting (4.3) with ppvt|ht,vt´1q “ N pµt, diagpσ2
t qq,

where

µmt “ w
J
2mht `w

J
4mvt´1 ` cm, log σ2

mt “ pw
1
2mq

Jht ` pw
1
4mq

Jvt´1 ` c
1
m, (4.4)

and µmt and σ2
mt are elements of µt and σ2

t , respectively. W1
2 and W1

4 are of the same

size of W2 and W4, respectively. Compared with the Gaussian TRBM (Sutskever

et al., 2009), in which σmt is fixed to 1, our formalism uses a diagonal matrix to

parameterize the variance structure of vt.

Modeling count data We also introduce an approach for modeling time-series data

with count observations, by replacing (4.3) with ppvt|ht,vt´1q “
śM

m“1 y
vmt
mt , where

ymt “
exppwJ2mht `w

J
4mvt´1 ` cmq

řM
m1“1 exppwJ2m1ht `w

J
4m1vt´1 ` cm1q

. (4.5)

This formulation is related to the Replicated Softmax Model (RSM) described in

Salakhutdinov and Hinton (2009b), however, our approach uses a directed connec-

tion from the binary hidden variables to the visible counts, while also learning the

dynamics in the count sequences.

Furthermore, rather than assuming that ht and vt only depend on ht´1 and vt´1,

in the experiments, we also allow for connections from the past n time steps of the

hidden and visible states, to the current states, ht and vt. A sliding window is then

used to go through the sequence to obtain n frames at each time. We refer to n as

the order of the model.

66



4.2.3 Deep Architecture for Sequence Modeling with TSBNs

Learning the sequential dependencies with the shallow model in (4.1)-(4.3) may be

restrictive. Therefore, we propose two deep architectures to improve its representa-

tional power: (i) adding stochastic hidden layers; (ii) adding deterministic hidden

layers. The graphical model for the deep TSBN is shown in Figure 4.1(c). Specifically,

we consider a deep TSBN with hidden layers h
p`q
t for t “ 1, . . . , T and ` “ 1, . . . , L.

Assume layer ` contains J p`q hidden units, and denote the visible layer vt “ h
p0q
t and

let h
pL`1q
t “ 0, for convenience. In order to obtain a proper generative model, the

top hidden layer hpLq contains stochastic binary hidden variables.

For the middle layers, ` “ 1, . . . , L´1, if stochastic hidden layers are utilized, the

generative process is expressed as pph
p`q
t q “

śJp`q

j“1 pph
p`q
jt |h

p``1q
t ,h

p`q
t´1,h

p`´1q
t´1 q, where

each conditional distribution is parameterized via a logistic function, as in (4.3).

If deterministic hidden layers are employed, we obtain h
p`q
t “ fph

p``1q
t ,h

p`q
t´1,h

p`´1q
t´1 q,

where fp¨q is chosen to be a rectified linear function. Although the differences between

these two approaches are minor, learning and inference algorithms can be quite

different, as shown in Section 4.3.3.

4.3 Scalable Learning and Inference

Computation of the exact posterior over the hidden variables in (4.1) is intractable.

Approximate Bayesian inference, such as Gibbs sampling or mean-field variational

Bayes (VB) inference, can be implemented (Gan et al., 2015c; Neal, 1992). However,

Gibbs sampling is very inefficient, due to the fact that the conditional posterior

distribution of the hidden variables does not factorize. The mean-field VB indeed

provides a fully factored variational posterior, but this technique increases the gap

between the bound being optimized and the true log-likelihood, potentially resulting

in a poor fit to the data. To allow for tractable and scalable inference and parameter

67



learning, without loss of the flexibility of the variational posterior, we apply the

Neural Variational Inference and Learning (NVIL) algorithm described in Mnih and

Gregor (2014).

4.3.1 Variational Lower Bound Objective

We are interested in training the TSBN model, pθpV,Hq, described in (4.1), with

parameters θ. Given an observation V, we introduce a fixed-form distribution,

qφpH|Vq, with parameters φ, that approximates the true posterior distribution,

ppH|Vq. We then follow the variational principle to derive a lower bound on the

marginal log-likelihood, expressed as1

LpV,θ,φq “ EqφpH|Vqrlog pθpV,Hq ´ log qφpH|Vqs . (4.6)

We construct the approximate posterior qφpH|Vq as a recognition model. By using

this, we avoid the need to compute variational parameters per data point; instead

we compute a set of parameters φ used for all V. In order to achieve fast inference,

the recognition model is expressed as

qφpH|Vq “ qph1|v1q ¨
T
ź

t“2

qpht|ht´1,vt,vt´1q , (4.7)

and each conditional distribution is specified as

qphjt “ 1|ht´1,vt,vt´1q “ σpuJ1jht´1 ` u
J
2jvt ` u

J
3jvt´1 ` djq , (4.8)

where h0 and v0, for qph1|v1q, are defined as zero vectors. The recognition parameters

φ are specified as U1 P RJˆJ , U2 P RJˆM , U3 P RJˆM . For i “ 1, 2, 3, uij is the

transpose of the jth row of Ui, and d “ rd1, . . . , dJ s
J is the bias term. The graphical

model is shown in Figure 4.1(b).

The recognition model defined in (4.8) has the same form as in the approximate

inference used for the TRBM (Sutskever and Hinton, 2007). Exact inference for

1 This lower bound is equivalent to the marginal log-likelihood if qφpH|Vq = ppH|Vq.

68



our model consists of a forward and backward pass through the entire sequence, that

requires the traversing of each possible hidden state. Our feedforward approximation

allows the inference procedure to be fast and implemented in an online fashion.

4.3.2 Parameter Learning

To optimize (4.6), we utilize Monte Carlo methods to approximate expectations and

stochastic gradient descent (SGD) for parameter optimization. The gradients can be

expressed as

∇θLpVq “ EqφpH|Vqr∇θ log pθpV,Hqs, (4.9)

∇φLpVq “ EqφpH|Vqrplog pθpV,Hq ´ log qφpH|Vqq ˆ∇φ log qφpH|Vqs. (4.10)

Specifically, in the TSBN model, if we define v̂mt “ σpwJ2mht `w
J
4mvt´1 ` cmq and

ĥjt “ σpuJ1jht´1 ` u
J
2jvt ` u

J
3jvt´1 ` djq, the gradients for w2m and u2j can be

calculated as

B log pθpV,Hq

Bw2mj

“

T
ÿ

t“1

pvmt ´ v̂mtq ¨ hjt,
B log qφpH|Vq

Bu2jm
“

T
ÿ

t“1

phjt ´ ĥjtq ¨ vmt. (4.11)

Other update equations, along with the learning details for the TSBN variants in

Section 4.2.2, are provided in Section 4.7.1. We observe that the gradients in (4.9)

and (4.10) share many similarities with the wake-sleep algorithm (Hinton et al.,

1995b). Wake-sleep alternates between updating θ in the wake phase and updating

φ in the sleep phase. The update of θ is based on the samples generated from

qφpH|Vq, and is identical to (4.9). However, in contrast to (4.10), the recognition

parameters φ are estimated from samples generated by the model, i.e., ∇φLpVq “

EpθpV,Hqr∇φ log qφpH|Vqs. This update does not optimize the same objective as

in (4.9), hence the wake-sleep algorithm is not guaranteed to converge (Mnih and

Gregor, 2014).

Inspecting (4.10), we see that we are using lφpV,Hq “ log pθpV,Hq´log qφpH|Vq

as the learning signal for the recognition parameters φ. The expectation of this

69



learning signal is exactly the lower bound (4.6), which is easy to evaluate. However,

this tractability makes the estimated gradients of the recognition parameters very

noisy. In order to make the algorithm practical, we employ the variance reduction

techniques proposed in Mnih and Gregor (2014), namely: (i) centering the learning

signal, by subtracting the data-independent baseline and the data-dependent base-

line; (ii) variance normalization, by dividing the centered learning signal by a running

estimate of its standard deviation. The data-dependent baseline is implemented us-

ing a neural network. Additionally, RMSprop (Tieleman and Hinton, 2012), a form

of SGD where the gradients are adaptively rescaled by a running average of their

recent magnitude, were found in practice to be important for fast convergence; thus

utilized throughout all the experiments. The outline of the NVIL algorithm is shown

in Algorithm 2 (reproduced from Mnih and Gregor (2014)). Cλpvtq represents the

data-dependent baseline, and α “ 0.8 throughout the experiments.

Algorithm 2 Compute gradient estimates for the
model parameters and recognition parameters.

∆θ Ð 0,∆φÐ 0,∆λÐ 0
LÐ 0
for tÐ 1 to T do
ht „ qφpht|vtq
lt Ð log pθpvt,htq ´ log qφpht|vtq
LÐ L` lt
lt Ð lt ´ Cλpvtq

end for
cb Ð meanpl1, . . . , lT q
vb Ð variancepl1, . . . , lT q
cÐ αc` p1´ αqcb
v Ð αv ` p1´ αqvb
for tÐ 1 to T do

lt Ð
lt´c

maxp1,
?
vq

∆θ Ð ∆θ `∇θ log pθpvt,htq
∆φÐ ∆φ` lt∇φ log qφpht|vtq
∆λÐ ∆λ` lt∇λCλpvtq

end for

70



4.3.3 Extension to deep models

The recognition model corresponding to the deep TSBN is shown in Figure 4.1(d).

Two kinds of deep architectures are discussed in Section 4.2.3. We illustrate the

difference of their learning algorithms in two respects: (i) the calculation of the

lower bound; and (ii) the calculation of the gradients.

The top hidden layer is stochastic. If the middle hidden layers are also stochas-

tic, the calculation of the lower bound is more involved, compared with the shallow

model; however, the gradient evaluation remain simple as in (4.11). On the other

hand, if deterministic middle hidden layers (i.e., recurrent neural networks) are em-

ployed, the lower bound objective will stay the same as a shallow model, since the

only stochasticity in the generative process lies in the top layer; however, the gra-

dients have to be calculated recursively through the back-propagation through time

algorithm (Werbos, 1990).

4.4 Related Work

The RBM has been widely used as building block to learn the sequential dependencies

in time-series data, e.g., the conditional-RBM-related models (Taylor et al., 2006;

Taylor and Hinton, 2009), and the temporal RBM (Sutskever and Hinton, 2007).

To make exact inference possible, the recurrent temporal RBM was also proposed

(Sutskever et al., 2009), and further extended to learn the dependency structure

within observations (Mittelman et al., 2014).

In the work reported here, we focus on modeling sequences based on the SBN

(Neal, 1992), which recently has been shown to have the potential to build deep

generative models (Mnih and Gregor, 2014; Gan et al., 2015c,d). Our work serves as

another extension of the SBN that can be utilized to model time-series data. Similar

ideas have also been considered in Henderson and Titov (2010) and Hinton et al.

71



Top: Generated from Piano midi

50 100 150 200 250 300

20

40

60

80

Bottom: Generated from Nottingham

20 40 60 80 100 120 140 160 180

20

40

60

80

1800 1850 1900 1950 2000
0

0.5

1

 

 

Topic 29

Nicaragua v. U.S.

1800 1850 1900 1950 2000
0

0.5

1

 

 

Topic 30
World War IIWar of 1812 Iraq War

1800 1850 1900 1950 2000
0

0.5

1

 

 

Topic 130

The age of American revolution

Figure 4.2: (Left) Dictionaries learned on the bouncing balls. (Middle) Generated
polyphonic music. (Right) Time evolving for 3 topics learned on STU.

(1995a). However, in Henderson and Titov (2010), the authors focus on grammar

learning, and use a feed-forward approximation of the mean-field VB to carry out

the inference; while in Hinton et al. (1995a), the wake-sleep algorithm was devel-

oped. We apply the model in a different scenario, and develop a fast and scalable

inference algorithm, based on the idea of training a recognition model by leveraging

the stochastic gradient of the variational bound.

There exist two main methods for the training of recognition models. The first

one, termed Stochastic Gradient Variational Bayes (SGVB), is based on a reparam-

eterization trick (Kingma and Welling, 2013; Rezende et al., 2014), which can be

only employed in models with continuous latent variables, e.g., the variational auto-

encoder (Kingma and Welling, 2013) and all the recent recurrent extensions of it

(Bayer and Osendorfer, 2014; Fabius et al., 2014; Chung et al., 2015). The second

one, called Neural Variational Inference and Learning (NVIL), is based on the log-

derivative trick (Mnih and Gregor, 2014), which is more general and can also be

applicable to models with discrete random variables. The NVIL algorithm has been

previously applied to the training of SBN in Mnih and Gregor (2014). Our approach

serves as a new application of this algorithm for a SBN-based time-series model.

72



4.5 Experiments

We present experimental results on four publicly available datasets: the bounc-

ing balls (Sutskever et al., 2009), polyphonic music (Boulanger-Lewandowski et al.,

2012), motion capture (Taylor et al., 2006) and state-of-the-Union (Han et al., 2014).

To assess the performance of the TSBN model, we show sequences generated from

the model, and report the average log-probability that the model assigns to a test

sequence, and the average squared one-step-ahead prediction error per frame.

The TSBN model with W3 “ 0 and W4 “ 0 is denoted Hidden Markov SBN

(HMSBN), the deep TSBN with stochastic hidden layer is denoted DTSBN-S, and

the deep TSBN with deterministic hidden layer is denoted DTSBN-D.

Model parameters were initialized by sampling randomly from N p0, 0.0012Iq,

except for the bias parameters, that were initialized as 0. The TSBN model is trained

using a variant of RMSprop (Graves, 2013), with momentum of 0.9, and a constant

learning rate of 10´4. The decay over the root mean squared gradients is set to

0.95. The maximum number of iterations we use is 105. The gradient estimates were

computed using a single sample from the recognition model. The only regularization

we used was a weight decay of 10´4. The data-dependent baseline was implemented

by using a neural network with a single hidden layer with 100 tanh units.

For the prediction of vt given v1:t´1, we (i) first obtain a sample from qφph1:t´1|v1:t´1q;

(ii) calculate the conditional posterior pθpht|h1:t´1,v1:t´1q of the current hidden

state; (iii) make a prediction for vt using pθpvt|h1:t,v1:t´1q. On the other hand,

synthesizing samples is conceptually simper. Sequences can be readily generated

from the model using ancestral sampling.

73



Table 4.1: Average prediction error for the bouncing balls dataset.

Model Dim Order Pred. Err.

DTSBN-s 100-100 2 2.79 ˘ 0.39
DTSBN-d 100-100 2 2.99 ˘ 0.42
TSBN 100 4 3.07 ˘ 0.40
TSBN 100 1 9.48 ˘ 0.38

RTRBM (Mittelman et al., 2014) 3750 1 3.88 ˘ 0.33
SRTRBM (Mittelman et al., 2014) 3750 1 3.31 ˘ 0.33

4.5.1 Bouncing balls dataset

We conducted the first experiment on synthetic videos of 3 bouncing balls, where

pixels are binary valued. We followed the procedure in Sutskever et al. (2009), and

generated 4000 videos for training, and another 200 videos for testing. Each video is

of length 100 and of resolution 30ˆ 30.

The dictionaries learned using the HMSBN are shown in Figure 4.2(Left). Com-

pared with previous work (Sutskever et al., 2009; Boulanger-Lewandowski et al.,

2012), our learned bases are more spatially localized. In Table 4.1, we compare the

average squared prediction error per frame over the 200 test videos, with recurrent

temporal RBM (RTRBM) and structured RTRBM (SRTRBM). As can be seen, our

approach achieves better performance compared with the baselines in the literature.

Furthermore, we observe that a high-order TSBN reduces the prediction error sig-

nificantly, compared with an order-one TSBN. This is due to the fact that by using

a high-order TSBN, more information about the past is conveyed. We also examine

the advantage of employing deep models. Using stochastic, or deterministic hidden

layer improves performances.

4.5.2 Motion capture dataset

In this experiment, we used the CMU motion capture dataset, that consists of mea-

sured joint angles for different motion types. We used the 33 running and walking

sequences of subject 35 (23 walking sequences and 10 running sequences). We fol-

74



Table 4.2: Average prediction error obtained for the motion capture dataset.

Model Walking Running

DTSBN-s 4.40 ˘ 0.28 2.56 ˘ 0.40
DTSBN-d 4.62 ˘ 0.01 2.84 ˘ 0.01
TSBN 5.12 ˘ 0.50 4.85 ˘ 1.26
HMSBN 10.77 ˘ 1.15 7.39 ˘ 0.47

ss-SRTRBM (Mittelman et al., 2014) 8.13 ˘ 0.06 5.88 ˘ 0.05
g-RTRBM (Mittelman et al., 2014) 14.41 ˘ 0.38 10.91 ˘ 0.27

Figure 4.3: Generated motion trajectories. (Left) Walking. (Middle) Running-
running-walking. (Right) Running-walking.

lowed the preprocessing procedure of Mittelman et al. (2014), after which we were

left with 58 joint angles. We partitioned the 33 sequences into training and testing

set: the first of which had 31 sequences, and the second had 2 sequences (one walking

and another running). We averaged the prediction error over 100 trials, as reported

in Table 4.2. The TSBN we implemented is of size 100 in each hidden layer and

order 1. It can be seen that the TSBN-based models improves over the Gaussian

(G-)RTRBM and the spike-slab (SS-)SRTRBM significantly.

Another popular motion capture dataset is the MIT dataset. To further demon-

strate the directed, generative nature of our model, we give our trained HMSBN

model different initializations, and show generated, synthetic data and the transitions

between different motion styles in Figure 4.3. These generated data are readily pro-

duced from the model and demonstrate realistic behavior. The smooth trajectories

are walking movements, while the vibrating ones are running. Corresponding video

files (AVI) are provided as mocap 1, 2 and 3, which can be downloaded from https:

75

https://drive.google.com/drive/u/0/folders/0B1HR6m3IZSO_SWt0aS1oYmlneDQ
https://drive.google.com/drive/u/0/folders/0B1HR6m3IZSO_SWt0aS1oYmlneDQ


Table 4.3: Test log-likelihood for the polyphonic music dataset.

Model Piano. Nott. Muse. JSB.

TSBN -7.98 -3.67 -6.81 -7.48

RNN-NADE (Boulanger-Lewandowski et al., 2012) -7.05 -2.31 -5.60 -5.56
RTRBM (Boulanger-Lewandowski et al., 2012) -7.36 -2.62 -6.35 -6.35
RNN (Boulanger-Lewandowski et al., 2012) -8.37 -4.46 -8.13 -8.71

//drive.google.com/drive/u/0/folders/0B1HR6m3IZSO_SWt0aS1oYmlneDQ.

4.5.3 Polyphonic music dataset

The third experiment is based on four different polyphonic music sequences of pi-

ano (Boulanger-Lewandowski et al., 2012), i.e., Piano-midi.de (Piano), Nottingham

(Nott), MuseData (Muse) and JSB chorales (JSB). Each of these datasets are repre-

sented as a collection of 88-dimensional binary sequences, that span the whole range

of piano from A0 to C8.

The samples generated from the trained HMSBN model are shown in Figure 4.2

(Middle). As can be seen, different styles of polyphonic music are synthesized. The

corresponding MIDI files are provided as music 1 and 2, which can be downloaded

from https://drive.google.com/drive/u/0/folders/0B1HR6m3IZSO_SWt0aS1oYmlneDQ.

Our model has the ability to learn basic harmony rules and local temporal coherence.

However, long-term structure and musical melody remain elusive. The variational

lower bound, along with the estimated log-likelihood in Boulanger-Lewandowski et al.

(2012), are presented in Table 4.3. The TSBN we implemented is of size 100 and or-

der 1. Empirically, adding layers did not improve performance on this dataset, hence

no such results are reported. The results of RNN-NADE and RTRBM (Boulanger-

Lewandowski et al., 2012) were obtained by only 100 runs of the annealed importance

sampling, which has the potential to overestimate the true log-likelihood. Our varia-

tional lower bound provides a more conservative estimate. Though, our performance

is still better than that of RNN.

76

https://drive.google.com/drive/u/0/folders/0B1HR6m3IZSO_SWt0aS1oYmlneDQ
https://drive.google.com/drive/u/0/folders/0B1HR6m3IZSO_SWt0aS1oYmlneDQ
https://drive.google.com/drive/u/0/folders/0B1HR6m3IZSO_SWt0aS1oYmlneDQ


Table 4.4: Average prediction precision for STU.

Model Dim MP PP

HMSBN 25 0.327˘ 0.002 0.353˘ 0.070
DHMSBN-s 25-25 0.299˘ 0.001 0.378˘ 0.006

GP-DPFA (Acharya et al., 2015) 100 0.223˘ 0.001 0.189˘ 0.003
DRFM (Acharya et al., 2015) 25 0.217˘ 0.003 0.177˘ 0.010

4.5.4 State of the Union dataset

The State of the Union (STU) dataset contains the transcripts of T “ 225 US State

of the Union addresses, from 1790 to 2014. Two tasks are considered, i.e., prediction

and dynamic topic modeling.

Prediction The prediction task is concerned with estimating the held-out words. We

employ the setup in Acharya et al. (2015). After removing stop words and terms that

occur fewer than 7 times in one document or less than 20 times overall, there are 2375

unique words. The entire data of the last year is held-out. For the documents in the

previous years, we randomly partition the words of each document into 80%/20%

split. The model is trained on the 80% portion, and the remaining 20% held-out

words are used to test the prediction at each year. The words in both held-out sets

are ranked according to the probability estimated from (4.5).

To evaluate the prediction performance, we calculate the precision @top-Mas

in Acharya et al. (2015), which is given by the fraction of the top-M words, predicted

by the model, that matches the true ranking of the word counts. M “ 50 is used.

Two recent works are compared, GP-DPFA (Acharya et al., 2015) and DRFM (Han

et al., 2014). The results are summarized in Table 4.4. Our model is of order 1. The

column MP denotes the mean precision over all the years that appear in the training

set. The column PP denotes the predictive precision for the final year. Our model

achieves significant improvements in both scenarios.

77



Table 4.5: Top 6 most probable words associated with the STU topics.

Topic #29 Topic #30 Topic #130 Topic #64 Topic #70 Topic #74
family officer government generations Iraqi Philippines
budget civilized country generation Qaida islands

Nicaragua warfare public recognize Iraq axis
free enemy law brave Iraqis Nazis

future whilst present crime AI Japanese
freedom gained citizens race Saddam Germans

Dynamic Topic Modeling The setup described in Han et al. (2014) is employed, and

the number of topics is 200. To understand the temporal dynamic per topic, three

topics are selected and the normalized probability that a topic appears at each year

are shown in Figure 4.2 (Right). Their associated top 6 words per topic are shown

in Table 4.5. The learned trajectory exhibits different temporal patterns across the

topics. Clearly, we can identify jumps associated with some key historical events.

For instance, for Topic 29, we observe a positive jump in 1986 related to military

and paramilitary activities in and against Nicaragua brought by the U.S. Topic 30

is related with war, where the War of 1812, World War II and Iraq War all spike

up in their corresponding years. In Topic 130, we observe consistent positive jumps

from 1890 to 1920, when the American revolution was taking place. Three other

interesting topics are also shown in Table 4.5. Topic 64 appears to be related to

education, Topic 70 is about Iraq, and Topic 74 is Axis and World War II. We note

that the words for these topics are explicitly related to these matters.

4.6 Conclusion

We have presented the Deep Temporal Sigmoid Belief Networks, an extension of SBN,

that models the temporal dependencies in high-dimensional sequences. To allow

for scalable inference and learning, an efficient variational optimization algorithm is

developed. Experimental results on several datasets show that the proposed approach

78



obtains superior predictive performance, and synthesizes interesting sequences.

In this work, we have investigated the modeling of different types of data individ-

ually. One interesting future work is to combine them into a unified framework for

dynamic multi-modality learning. Furthermore, we can use high-order optimization

methods to speed up inference (Fan et al., 2015).

4.7 Supplementary Material

4.7.1 Learning and Inference Details on TSBN

In order to implement the NVIL algorithm described in Mnih and Gregor (2014), we

need to calculate the lower bound and also the gradients. Specifically, we have the

variational lower bound L “ řT
t“1 Eqφph|vqrlts, where lt is expressed as

lt “
J
ÿ

j“1

´

ψ
p1q
jt hjt ´ logp1` exppψ

p1q
jt qq

¯

`

M
ÿ

m“1

´

ψ
p2q
mtvmt ´ logp1` exppψ

p2q
mtqq

¯

(4.12)

´

«

J
ÿ

j“1

´

ψ
p3q
jt hjt ´ logp1` exppψ

p3q
jt qq

¯

ff

,

and we have defined

ψ
p1q
jt “ w

J
1jht´1 `w

J
3jvt´1 ` bj , (4.13)

ψ
p2q
mt “ w

J
2mht `w

J
4mvt´1 ` cm , (4.14)

ψ
p3q
jt “ u

J
1jht´1 ` u

J
2jvt ` u

J
3jvt´1 ` dj . (4.15)

By further defining

χ
p1q
jt “ hjt ´ σpψ

p1q
jt q, χ

p2q
mt “ vmt ´ σpψ

p2q
mtq, χ

p3q
jt “ hjt ´ σpψ

p3q
jt q, (4.16)

79



The gradients for the model parameters θ are expressed as

B log pθpvt,htq

Bw1jj1
“ χ

p1q
jt hj1t´1,

B log pθpvt,htq

Bw3jm

“ χ
p1q
jt vmt´1,

B log pθpvt,htq

Bbj
“ χ

p1q
jt ,

(4.17)

B log pθpvt,htq

Bw2mj

“ χ
p2q
mthjt,

B log pθpvt,htq

Bw4mm1
“ χ

p2q
mtvm1t´1,

B log pθpvt,htq

Bcm
“ χ

p2q
mt .

(4.18)

The gradients for the recognition parameters φ are expressed as

B log qφpht|vtq

Bu1jj1
“ χ

p3q
jt hj1t´1,

B log qφpht|vtq

Bu2jm
“ χ

p3q
jt vmt , (4.19)

B log qφpht|vtq

Bu3jm
“ χ

p3q
jt vmt´1,

B log qφpht|vtq

Bdj
“ χ

p3q
jt . (4.20)

Modeling Real-valued Data

When modeling real-valued data, we substitute (4.3) with ppvt|ht,vt´1q “ N pµt, diagpσ2
t qq,

where

µmt “ w
J
2mht `w

J
4mvt´1 ` cm, log σmt “ pw

1
2mq

Jht ` pw
1
4mq

Jvt´1 ` c
1
m, (4.21)

and we have W1
2 P RMˆJ and W1

4 P RMˆM . The recognition model remains the

same as in (4.8). Let τmt “ log σmt, we obtain

lt “
J
ÿ

j“1

´

ψ
p1q
jt hjt ´ logp1` exppψ

p1q
jt qq

¯

´

M
ÿ

m“1

ˆ

1

2
log 2π ` τmt `

pvmt ´ µmtq
2

2e2τmt

˙

´

«

J
ÿ

j“1

´

ψ
p3q
jt hjt ´ logp1` exppψ

p3q
jt qq

¯

ff

. (4.22)

All the gradient calculation remains the same as (4.17)-(4.20), except the following.

B log pθpvt,htq

Bw2mj

“ χ
p4q
mthjt,

B log pθpvt,htq

Bw4mm1
“ χ

p4q
mtvm1t´1,

B log pθpvt,htq

Bcm
“ χ

p4q
mt ,

B log pθpvt,htq

Bw12mj
“ χ

p5q
mthjt,

B log pθpvt,htq

Bw14mm1
“ χ

p5q
mtvm1t´1,

B log pθpvt,htq

Bc1m
“ χ

p5q
mt ,

80



where we have defined

χ
p4q
mt “

B log pθpvt,htq

Bµmt
“
vmt ´ µmt
e2τmt

, χ
p5q
mt “

B log pθpvt,htq

Bτmt
“
pvmt ´ µmtq

2

e2τmt
´ 1 .

Modeling Count Data

We also introduce an approach for modeling time-series data with count observations,

by replacing (4.3) with ppvt|ht,vt´1q “
śM

m“1 y
vmt
mt , where

ymt “
exppwJ2mht `w

J
4mvt´1 ` cmq

řM
m1“1 exppwJ2m1ht `w

J
4m1vt´1 ` cm1q

. (4.23)

The recognition model still remains the same as in (4.8). The lt now is expressed as

lt “
J
ÿ

j“1

´

ψ
p1q
jt hjt ´ logp1` exppψ

p1q
jt qq

¯

`

M
ÿ

m“1

˜

ψ
p2q
mtvmt ´ vmt log

M
ÿ

m1“1

exppψ
p2q
mtq

¸

´

«

J
ÿ

j“1

´

ψ
p3q
jt hjt ´ logp1` exppψ

p3q
jt qq

¯

ff

. (4.24)

All the gradient calculations remain the same as (4.17)-(4.20), except the following

B log pθpvt,htq

Bw2mj

“ χ
p6q
mthjt,

B log pθpvt,htq

Bw4mm1
“ χ

p6q
mtvm1t´1,

B log pθpvt,htq

Bcm
“ χ

p6q
mt .

where we have defined χ
p6q
mt “ vmt ´ ymt

řM
m1“1 vm1t.

81



5

Semantic Compositional Networks for Visual
Captioning

In this chapter, I will present semantic compositional network for controllable visual

captionong. The proposed model uses a mixture-of-experts design, and can be con-

sidered as training an ensemble of up to 1000 LSTMs simultaneously. The degree to

which each member of the ensemble is used to generate an image caption is tied to

the image-dependent probability of the corresponding tag.

5.1 Introduction

There has been a recent surge of interest in developing models that can generate

captions for images or videos, termed visual captioning. Most of these approaches

learn a probabilistic model of the caption, conditioned on an image or a video (Mao

et al., 2015; Venugopalan et al., 2015b; Fang et al., 2015; Karpathy and Fei-Fei, 2015;

Vinyals et al., 2015; Xu et al., 2015; Donahue et al., 2015; Venugopalan et al., 2015a;

Pan et al., 2016; Yu et al., 2016). Inspired by the successful use of the encoder-decoder

framework employed in machine translation (Bahdanau et al., 2015; Cho et al., 2014;

82



Sutskever et al., 2014), most recent work on visual captioning employs a convolutional

neural network (CNN) as an encoder, obtaining a fixed-length vector representation

of a given image or video. A recurrent neural network (RNN), typically implemented

with long short-term memory (LSTM) units (Hochreiter and Schmidhuber, 1997),

is then employed as a decoder to generate a caption. Aided by advances in CNN

training on large datasets (e.g., ImageNet (Russakovsky et al., 2015)) (Krizhevsky

et al., 2012; Simonyan and Zisserman, 2015; Szegedy et al., 2015; He et al., 2016),

the quality of caption generation has improved significantly using this approach.

Recent work shows that adding explicit high-level semantic concepts (i.e., tags)

of the input image/video can further improve visual captioning. As shown in Wu

et al. (2016a); You et al. (2016), detecting explicit semantic concepts encoded in

an image, and adding this high-level semantic information into the CNN-LSTM

framework, has improved performance significantly. Specifically, Wu et al. (2016a)

feeds the semantic concepts as an initialization step into the LSTM decoder. In You

et al. (2016), a model of semantic attention is proposed which selectively attends

to semantic concepts through a soft attention mechanism (Bahdanau et al., 2015).

On the other hand, although significant performance improvements were achieved,

integration of semantic concepts into the LSTM-based caption generation process is

constrained in these methods; e.g., only through soft attention or initialization of

the first step of the LSTM.

In this paper, we propose the Semantic Compositional Network (SCN) to more

effectively assemble the meanings of individual tags to generate the caption that de-

scribes the overall meaning of the image, as illustrated in Figure 5.1(a). Each triangle

symbol represents an ensemble of tag-dependent weight matrices. The number next

to a semantic concept (i.e., a tag) is the probability that the corresponding semantic

concept is presented in the input image. Similar to the conventional CNN-LSTM-

based image captioning framework, a CNN is used to extract the visual feature

83



Figure 5.1: Model architecture and illustration of semantic composition.

vector, which is then fed into a LSTM for generating the image caption (for simplic-

ity, in this discussion we refer to images, but the method is also applicable to video).

However, unlike the conventional LSTM, the SCN extends each weight matrix of the

conventional LSTM to an ensemble of tag-dependent weight matrices, subject to the

probabilities that the tags are present in the image. These tag-dependent weight

matrices form a weight tensor with a large number of parameters. In order to make

learning feasible, we factorize that tensor to be a three-way matrix product, which

dramatically reduces the number of free parameters to be learned, while also yielding

excellent performance.

The main contributions of this paper are as follows: (i) We propose the SCN

84



to effectively compose individual semantic concepts for image captioning. (ii) We

perform comprehensive evaluations on two image captioning benchmarks, demon-

strating that the proposed method outperforms previous state-of-the-art approaches

by a substantial margin. For example, as reported by the COCO official test server,

we achieve a BLEU-4 of 33.1, an improvement of 1.5 points over the current published

state-of-the-art (You et al., 2016). (iii) We extend the proposed framework from

image captioning to video captioning, demonstrating the versatility of the proposed

model. (iv) We also perform a detailed analysis to study the SCN, showing that the

model can adjust the caption smoothly by modifying the tags.

5.2 Related work

We focus on recent neural-network-based literature for caption generation, as these

are most relevant to our work. Such models typically extract a visual feature vector

via a CNN, and then send that vector to a language model for caption generation.

Representative works include Chen and Lawrence Zitnick (2015); Devlin et al. (2015);

Donahue et al. (2015); Karpathy and Fei-Fei (2015); Kiros et al. (2014a,c); Mao

et al. (2015); Vinyals et al. (2015) for image captioning and Donahue et al. (2015);

Venugopalan et al. (2015a,b); Yu et al. (2016); Ballas et al. (2016); Pu et al. (2018);

Dong et al. (2016) for video captioning. The differences of the various methods

mainly lie in the types of CNN architectures and language models. For example,

the vanilla RNN (Elman, 1990) was used in Mao et al. (2015); Karpathy and Fei-Fei

(2015), while the LSTM (Hochreiter and Schmidhuber, 1997) was used in Vinyals

et al. (2015); Venugopalan et al. (2015a,b). The visual feature vector was only fed

into the RNN once at the first time step in Vinyals et al. (2015); Karpathy and

Fei-Fei (2015), while it was used at each time step of the RNN in Mao et al. (2015).

Most recently, Xu et al. (2015) utilized an attention-based mechanism to learn

where to focus in the image during caption generation. This work was followed

85



by Yang et al. (2016) which introduced a review module to improve the attention

mechanism and Liu et al. (2016) which proposed a method to improve the correctness

of visual attention. Moreover, a variational autoencoder was developed in Pu et al.

(2016b) for image captioning. Other related work includes Pan et al. (2016) for video

captioning and Anne Hendricks et al. (2016) for composing sentences that describe

novel objects.

Another class of models uses semantic information for caption generation. Specif-

ically, Jia et al. (2015) applied retrieved sentences as additional semantic information

to guide the LSTM when generating captions, while Fang et al. (2015); Wu et al.

(2016a); You et al. (2016) applied a semantic-concept-detection process (Gan et al.,

2016a) before generating sentences. In addition, Fang et al. (2015) also proposes a

deep multimodal similarity model to project visual features and captions into a joint

embedding space. This line of methods represents the current state of the art for

image captioning. Our proposed model also lies in this category; however, distinct

from the aforementioned approaches, our model uses weight tensors in LSTM units.

This allows learning an ensemble of semantic-concept-dependent weight matrices for

generating the caption.

Related to but distinct from the hierarchical composition in a recursive neural

network (Socher et al., 2014), our model carries out implicit composition of con-

cepts, and there is no hierarchical relationship among these concepts. Figure 5.1(b)

illustrates the semantic composition manifested in the SCN model. Specifically, a

set of semantic concepts, such as “baby, holding, toothbrush, mouth”, are detected

with high probabilities. If only one semantic concept is turned on, the model will

generate a description covering only part of the input image, as shown in sentences

1-5 of Figure 5.1(b); however, by assembling all these semantic concepts, the SCN

is able to generate a comprehensive description “a baby holding a toothbrush in its

mouth”. More interestingly, as shown in sentences 6-8 of Figure 5.1(b), the SCN

86



also has great flexibility to adjust the generation of the caption by changing certain

semantic concepts.

The tensor factorization method is used to make the SCN compact and simplify

learning. Similar ideas have been exploited in Kiros et al. (2014b); Memisevic and

Hinton (2007); Song et al. (2016a); Sutskever et al. (2011); Taylor and Hinton (2009);

Wu et al. (2016b); Gan et al. (2017a); Wang et al. (2017). In Donahue et al. (2015);

Jin et al. (2015); Kiros et al. (2014a) the authors also briefly discussed using the tensor

factorization method for image captioning. Specifically, visual features extracted

from CNNs are utilized in Donahue et al. (2015); Kiros et al. (2014a), and an inferred

scene vector is used in Jin et al. (2015) for tensor factorization. In contrast to these

works, we use the semantic-concept vector that is formed by the probabilities of

all tags to weight the basis LSTM weight matrices in the ensemble. Our semantic-

concept vector is more powerful than the visual-feature vector (Donahue et al., 2015;

Kiros et al., 2014a) and the scene vector (Jin et al., 2015) in terms of providing explicit

semantic information of an image, hence leading to significantly better performance,

as shown in our quantitative evaluation. In addition, the usage of semantic concepts

also makes the proposed SCN more interpretable than Donahue et al. (2015); Jin

et al. (2015); Kiros et al. (2014a), as shown in our qualitative analysis, since each

unit in the semantic-concept vector corresponds to an explicit tag.

5.3 Semantic compositional networks

5.3.1 Review of RNN for image captioning

Consider an image I, with associated caption X. We first extract feature vector vpIq,

which is often the top-layer features of a pretrained CNN. Henceforth, for simplicity,

we omit the explicit dependence on I, and represent the visual feature vector as v.

The length-T caption is represented as X “ px1, . . . ,xT q, with xt a 1-of-V (“one

hot”) encoding vector, with V the size of the vocabulary. The length T typically

87



varies among different captions.

The t-th word in a caption, xt, is linearly embedded into an nx-dimensional real-

valued vector wt “ Wext, where We P RnxˆV is a word embedding matrix (learned),

i.e., wt is a column of We chosen by the one-hot xt. The probability of caption X

given image feature vector v is defined as

ppX|Iq “
T
ź

t“1

ppxt|x0, . . . ,xt´1,vq , (5.1)

where x0 is defined as a special start-of-the-sentence token. All the words in the

caption are sequentially generated using a RNN, until the end-of-the-sentence symbol

is generated. Specifically, each conditional ppxt|xăt,vq is specified as softmaxpVhtq,

where ht is recursively updated through ht “ Hpwt´1,ht´1,vq, and h0 is defined as

a zero vector (h0 is not updated during training). V is the weight matrix connecting

the RNN’s hidden state, used for computing a distribution over words. Bias terms

are omitted for simplicity throughout the paper.

Without loss of generality, we begin by discussing an RNN with a simple tran-

sition function Hp¨q; this is generalized in Section 5.3.4 to the LSTM. Specifically,

Hp¨q is defined as

ht “ σpWxt´1 `Uht´1 ` 1pt “ 1q ¨Cvq , (5.2)

where σp¨q is a logistic sigmoid function, and 1p¨q represents an indicator function.

Feature vector v is fed into the RNN at the beginning, i.e., at t “ 1. W is defined

as the input matrix, and U is termed the recurrent matrix. The model in (5.2) is

illustrated in Figure 5.2(a).

5.3.2 Semantic concept detection

The SCN developed below is based on the detection of semantic concepts, i.e., tags,

in the image under test. In order to detect such from an image, we first select a set

88



of tags from the caption text in the training set. Following Fang et al. (2015), we

use the K most common words in the training captions to determine the vocabulary

of tags, which includes the most frequent nouns, verbs, or adjectives.

In order to predict semantic concepts given a test image, motivated by Wu et al.

(2016a); Tran et al. (2016), we treat this problem as a multi-label classification task.

Suppose there are N training examples, and yi “ ryi1, . . . , yiKs P t0, 1u
K is the label

vector of the i-th image, where yik “ 1 if the image is annotated with tag k, and

yik “ 0 otherwise. Let vi and si represent the image feature vector and the semantic

feature vector for the i-th image, the cost function to be minimized is

1

N

N
ÿ

i“1

K
ÿ

k“1

´

yik log sik ` p1´ yikq logp1´ sikq
¯

, (5.3)

where si “ σ
`

fpviq
˘

is a K-dimensional vector with si “ rsi1, . . . , siKs, σp¨q is the

logistic sigmoid function and fp¨q is implemented as a multilayer perceptron (MLP).

In testing, for each input image, we compute a semantic-concept vector s, formed

by the probabilities of all tags, computed by the semantic-concept detection model.

5.3.3 SCN-RNN

The SCN extends each weight matrix of the conventional RNN to be an ensemble of

a set of tag-dependent weight matrices, subjective to the probabilities that the tags

are present in the image. Specifically, the SCN-RNN computes the hidden states as

follows

ht “ σpWpsqxt´1 `Upsqht´1 ` zq , (5.4)

where z “ 1pt “ 1q ¨ Cv, and Wpsq and Upsq are ensembles of tag-dependent

weight matrices, subjective to the probabilities that the tags are present in the image,

according to the semantic-concept vector s.

Given s P RK , we define two weight tensors WT P RnhˆnxˆK and UT P RnhˆnhˆK ,

where nh is the number of hidden units and nx is the dimension of word embedding.

89



!
"#

"$%&' "( "&

"& ")

ℎ& ℎ) ℎ$

!
"#

"$%&"( "&

"& ")

ℎ& ℎ) ℎ$

(a) Basic RNN

(b) SCN-RNN

Figure 5.2: Comparison of our proposed model with a conventional recurrent neural
network (RNN) for caption generation.

Wpsq P Rnhˆnx and Upsq P Rnhˆnh can be specified as

Wpsq “
K
ÿ

k“1

skWT rks, Upsq “
K
ÿ

k“1

skUT rks , (5.5)

where sk is the k-th element in s; WT rks and UT rks denote the k-th 2D “slice” of WT

and UT , respectively. The probability of the k-th semantic concept, sk, is associated

with a pair of RNN weight matrices WT rks and UT rks, implicitly specifying K RNNs

in total. Consequently, training such a model as defined in (5.4) and (5.5) can be

interpreted as jointly training an ensemble of K RNNs.

Though appealing, the number of parameters is proportional to K, which is

prohibitive for large K (e.g., K “ 1000 for COCO). In order to remedy this problem,

we adopt ideas from Memisevic and Hinton (2007) to factorize Wpsq and Upsq

defined in (5.5) as

90



Wpsq “ Wa ¨ diagpWbsq ¨Wc , (5.6)

Upsq “ Ua ¨ diagpUbsq ¨Uc , (5.7)

where Wa P Rnhˆnf , Wb P RnfˆK and Wc P Rnfˆnx . Similiarly, Ua P Rnhˆnf ,

Ub P RnfˆK and Uc P Rnfˆnh . nf is the number of factors. Substituting (5.6) and

(5.7) into (5.4), we obtain our SCN with an RNN as

x̃t´1 “ WbsdWcxt´1 , (5.8)

h̃t´1 “ UbsdUcht´1 , (5.9)

z “ 1pt “ 1q ¨Cv , (5.10)

ht “ σpWax̃t´1 `Uah̃t´1 ` zq . (5.11)

where d denotes the element-wise multiply (Hadamard) operator.

Wa and Wc are shared among all the captions, effectively capturing common lin-

guistic patterns; while the diagonal term, diagpWbsq, accounts for semantic aspects

of the image under test, captured by s. The same analysis also holds true for Ua,b,c.

In this factorized model, the RNN weight matrices that correspond to each semantic

concept share “structure.” This factorized model (termed SCN-RNN) is illustrated

in Figure 5.2(b).

To provide further motivation for and insight into the decompositions in (5.6)

and (5.7), let wbk represent the kth column of Wb, then

Wpsq “
K
ÿ

k“1

skrWa ¨ diagpwbkq ¨Wcs . (5.12)

A similar decomposition is manifested for Upsq. The matrix Wa ¨diagpwbkq¨Wc may

be interpreted as the k-th “slice” of a weight tensor, with each slice corresponding to

one of the K semantic concepts (K total tensor “slices,” each of size nhˆnx). Hence,

via the decomposition in (5.6) and (5.7), we effectively learn an ensemble of K sets of

91



RNN parameters, one for each semantic concept. This is efficiently done by sharing

Wa and Wc when composing each member of the ensemble. The weight with which

the k-th slice of this tensor contributes to the RNN parameters for a given image is

dependent on the respective probability sk with which the k-th semantic concept is

inferred to be associated with image I.

The number of parameters in the basic RNN model (see Figure 5.2(a)) is nh ¨pnx`

nhq, while the number of parameters in the SCN-RNN model (see Figure 5.2(b)) is

nf ¨ pnx ` 2K ` 3nhq. In experiments, we set nf “ nh. Therefore, the additional

number of parameters is 2 ¨ nh ¨ pnh ` Kq. This increased model complexity also

indicates increased training/testing time.

5.3.4 SCN-LSTM

RNNs with LSTM units (Hochreiter and Schmidhuber, 1997) have emerged as a pop-

ular architecture, due to their representational power and effectiveness at capturing

long-term dependencies. We generalize the SCN-RNN model by using LSTM units.

Specifically, we define ht “ Hpxt´1,ht´1,v, sq as

it “ σpWiax̃i,t´1 `Uiah̃i,t´1 ` zq , (5.13)

ft “ σpWfax̃f,t´1 `Ufah̃f,t´1 ` zq , (5.14)

ot “ σpWoax̃o,t´1 `Uoah̃o,t´1 ` zq , (5.15)

c̃t “ σpWcax̃c,t´1 `Ucah̃c,t´1 ` zq , (5.16)

ct “ it d c̃t ` ft d ct´1 , (5.17)

ht “ ot d tanhpctq , (5.18)

where z “ 1pt “ 1q ¨Cv. For ‹ “ i, f, o, c, we define

x̃‹,t´1 “ W‹bsdW‹cxt´1 , (5.19)

h̃‹,t´1 “ U‹bsdU‹cht´1 . (5.20)

92



Since we implement the SCN with LSTM units, we name this model SCN-LSTM.

In experiments, since LSTM is more powerful than classifical RNN, we only report

results using SCN-LSTM.

In summary, distinct from previous image-captioning methods, our model has a

unique way to utilize and combine the visual feature v and semantic-concept vector

s extracted from an image I. v is fed into the LSTM to initialize the first step, which

is expected to provide the LSTM an overview of the image content. While the LSTM

state is initialized with the overall visual context v, an ensemble of K sets of LSTM

parameters is utilized when decoding, weighted by the semantic-concept vector s, to

generate the caption.

Model learning Given the image I and associated caption X, the objective function is

the sum of the log-likelihood of the caption conditioned on the image representation:

log ppX|Iq “
T
ÿ

t“1

ppxt|x0, . . . ,xt´1,v, sq . (5.21)

The above objective corresponds to a single image-caption pair. In training, we

average over all training pairs.

5.3.5 Extension to video captioning

The above framework can be readily extended to the task of video captioning (Don-

ahue et al., 2015; Venugopalan et al., 2015a,b; Yu et al., 2016; Ballas et al., 2016;

Xu et al., 2016). In order to effectively represent the spatiotemporal visual content

of a video, we use a two-dimensional (2D) and a three-dimensional (3D) CNN to

extract visual features of video frames/clips. We then perform a mean pooling pro-

cess Venugopalan et al. (2015b) over all 2D CNN features and 3D CNN features, to

generate two feature vectors (one from 2D CNN features and the other from 3D CNN

features). The representation of each video, v, is produced by concatenating these

93



two features. Similarly, we also obtain the semantic-concept vector s by running

the semantic-concept detector based on the video representation v. After v and s

are obtained, we employ the same model proposed above directly for video-caption

generation, as described in Figure 5.2(b).

5.4 Experiments

5.4.1 Datasets

We present results on three benchmark datasets: COCO (Lin et al., 2014), Flickr30k (Young

et al., 2014) and Youtube2Text (Chen and Dolan, 2011). COCO and Flickr30k are

for image captioning, containing 123287 and 31783 images, respectively. Each image

is annotated with at least 5 captions. We use the same pre-defined splits as Karpa-

thy and Fei-Fei (2015) for all the datasets: on Flickr30k, 1000 images for validation,

1000 for test, and the rest for training; and for COCO, 5000 images are used for both

validation and testing. We further tested our model on the official COCO test set

consisting of 40775 images (human-generated captions for this split are not publicly

available), and evaluated our model on the COCO evaluation server. We also follow

the publicly available code (Karpathy and Fei-Fei, 2015) to preprocess the captions,

yielding vocabulary sizes of 8791 and 7414 for COCO and Flickr30k, respectively.

Youtube2Text is used for video captioning, which contains 1970 Youtube clips,

and each video is annotated with around 40 sentences. We use the same splits as

provided in Venugopalan et al. (2015b), with 1200 videos for training, 100 videos

for validation, and 670 videos for testing. We convert all captions to lower case and

remove the punctuation, yielding vocabulary size of 12594 for Youtube2Text.

5.4.2 Training procedure

For image representation, we take the output of the 2048-way pool5 layer from

ResNet-152 (He et al., 2016), pretrained on the ImageNet dataset (Russakovsky

94



et al., 2015). For video representation, in addition to using the 2D ResNet-152 to

extract features on each video frame, we also utilize a 3D CNN (C3D) (Tran et al.,

2015) to extract features on each video. The C3D is pretrained on Sports-1M video

dataset (Karpathy et al., 2014), and we take the output of the 4096-way fc7 layer

from C3D as the video representation. We consider the RGB frames of videos as in-

put, with 2 frames per second. Each video frame is resized as 112ˆ112 and 224ˆ224

for the C3D and ResNet-152 feature extractor, respectively. The C3D feature ex-

tractor is applied on video clips of length 16 frames (as in Karpathy et al. (2014))

with an overlap of 8 frames.

We use the procedure described in Section 5.3.2 for semantic concept detection.

The semantic-concept vocabulary size is determined to reflect the complexity of the

dataset, which is set to 1000, 200 and 300 for COCO, Flickr30k and Youtube2Text,

respectively. Since Youtube2Text is a relatively small dataset, we found that it is

very difficult to train a reliable semantic-concept detector using the Youtube2Text

dataset alone, due to its limited amount of data. In experiments, we utilize additional

training data from COCO.

For model training, all the parameters in the SCN-LSTM are initialized from a

uniform distribution in [-0.01,0.01]. All bias terms are initialized to zero. Word em-

bedding vectors are initialized with the publicly available word2vec vectors (Mikolov

et al., 2013). The embedding vectors of words not present in the pretrained set

are initialzied randomly. The number of hidden units and the number of factors in

SCN-LSTM are both set to 512 and we use mini-batches of size 64. The maximum

number of epochs we run for all the three datasets is 20. Gradients are clipped if the

norm of the parameter vector exceeds 5 (Sutskever et al., 2014). We do not perform

any dataset-specific tuning and regularization other than dropout (Zaremba et al.,

2014) and early stopping on validation sets. The Adam algorithm (Kingma and Ba,

2015) with learning rate 2 ˆ 10´4 is utilized for optimization. All experiments are

95



Methods
COCO

B-1 B-2 B-3 B-4 M C
NIC (Vinyals et al., 2015) 0.666 0.451 0.304 0.203 ´ ´

m-RNN (Mao et al., 2015) 0.67 0.49 0.35 0.25 ´ ´

Hard-Attention (Xu et al., 2015) 0.718 0.504 0.357 0.250 0.230 ´

ATT (You et al., 2016) 0.709 0.537 0.402 0.304 0.243 ´

Att-CNN+LSTM (Wu et al., 2016a) 0.74 0.56 0.42 0.31 0.26 0.94
LSTM-R 0.698 0.525 0.390 0.292 0.238 0.889
LSTM-T 0.716 0.546 0.411 0.312 0.250 0.952
LSTM-RT 0.724 0.555 0.419 0.316 0.252 0.970
LSTM-RT2 0.730 0.568 0.430 0.322 0.249 0.977
SCN-LSTM 0.728 0.566 0.433 0.330 0.257 1.012
SCN-LSTM Ensemble of 5 0.741 0.578 0.444 0.341 0.261 1.041

Table 5.1: Performance of the proposed model (SCN-LSTM) and other state-of-the-
art methods on the COCO dataset.

implemented in Theano (Theano Development Team, 2016)1.

In testing, we use beam search for caption generation, which selects the top-k

best sentences at each time step and considers them as the candidates to generate

new top-k best sentences at the next time step. We set the beam size to k “ 5 in

experiments.

5.4.3 Evaluation

The widely used BLEU (Papineni et al., 2002), METEOR (Banerjee and Lavie, 2005),

ROUGE-L (Lin, 2004), and CIDEr-D (Vedantam et al., 2015) metrics are reported in

our quantitative evaluation of the performance of the proposed model and baselines

in the literature. All the metrics are computed by using the code released by the

COCO evaluation server (Chen et al., 2015b). For COCO and Flickr30k datasets, be-

sides comparing to results reported in previous work, we also re-implemented strong

baselines for comparison. The results of image captioning are presented in Table 5.1.

The models we implemented are as follows.

1 Code is publicly available at https://github.com/zhegan27/Semantic_Compositional_Nets.

96

https://github.com/zhegan27/Semantic_Compositional_Nets


Methods
Flickr30k

B-1 B-2 B-3 B-4 M
NIC (Vinyals et al., 2015) 0.663 0.423 0.277 0.183 ´

m-RNN (Mao et al., 2015) 0.60 0.41 0.28 0.19 ´

Hard-Attention (Xu et al., 2015) 0.669 0.439 0.296 0.199 0.185
ATT (You et al., 2016) 0.647 0.460 0.324 0.230 0.189
Att-CNN+LSTM (Wu et al., 2016a) 0.73 0.55 0.40 0.28 ´

LSTM-R 0.657 0.437 0.296 0.201 0.186
LSTM-T 0.691 0.483 0.336 0.232 0.202
LSTM-RT 0.706 0.486 0.339 0.235 0.204
LSTM-RT2 0.724 0.523 0.370 0.257 0.210
SCN-LSTM 0.735 0.530 0.377 0.265 0.218
SCN-LSTM Ensemble of 5 0.747 0.552 0.403 0.288 0.223

Table 5.2: Performance of the proposed model (SCN-LSTM) and other state-of-the-
art methods on the Flickr30k dataset.

1. LSTM-R / LSTM-T / LSTM-RT: R, T, RT denotes using different features.

Specifically, R denotes ResNet visual feature vector, T denotes Tags (i.e., the

semantic-concept vector), and RT denotes the concatenation of R and T. The

features are fed into a standard LSTM decoder only at the initial time step.

In particular, LSTM-T is the model proposed in Wu et al. (2016a).

2. LSTM-RT2: The ResNet feature vector is sent to a standard LSTM decoder at

the first time step, while the tag vector is sent to the LSTM decoder at every

time step in addition to the input word. This model is similar to You et al.

(2016) without using semantic attention. This is the model closest to ours,

which provides a direct comparison to our proposed model.

3. SCN-LSTM: This is the model presented in Section 5.3.4.

For video captioning experiments, we use the same notation. For example, LSTM-

C means we leverage the C3D feature for caption generation.

97



Model
BLEU-1 BLEU-2 BLEU-3 BLEU-4

c5 c40 c5 c40 c5 c40 c5 c40

SCN-LSTM 0.740 0.917 0.575 0.839 0.436 0.739 0.331 0.631

ATT 0.731 0.900 0.565 0.815 0.424 0.709 0.316 0.599

OV 0.713 0.895 0.542 0.802 0.407 0.694 0.309 0.587

MSR Cap 0.715 0.907 0.543 0.819 0.407 0.710 0.308 0.601

Model
METEOR ROUGE-L CIDEr-D ´

c5 c40 c5 c40 c5 c40 ´ ´

SCN-LSTM 0.257 0.348 0.543 0.696 1.003 1.013 ´ ´

ATT 0.250 0.335 0.535 0.682 0.943 0.958 ´ ´

OV 0.254 0.346 0.530 0.682 0.943 0.946 ´ ´

MSR Cap 0.248 0.339 0.526 0.680 0.931 0.937 ´ ´

Table 5.3: Comparison to published state-of-the-art image captioning models on the
blind test set as reported by the COCO test server.

5.4.4 Quantitative results

Performance on COCO and Flickr30k We first present results on the task of image

captioning, summarized in Table 5.1 and Table 5.2. The use of tags (LSTM-T) pro-

vides better performance than leveraging visual features alone (LSTM-R). Combining

both tags and visual features further enhances performance, as expected. Compared

with only feeding the tags into the LSTM at the initial time step (LSTM-RT), LSTM-

RT2 yields better results, since it takes as input the tag feature at each time step.

Further, the direct comparison between LSTM-RT2 and SCN-LSTM demonstrates

the advantage of our proposed model, indicating that our approach is a better method

to fuse semantic concepts into the LSTM.

We also report results averaging an ensemble of 5 identical SCN-LSTM models

trained with different initializations, which is a common strategy adopted widely You

et al. (2016) (note that now we employ ensembles in two ways: an ensemble of LSTM

parameters linked to tags, and an overaching ensemble atop the entire model). We

obtain state-of-the-art results on both COCO and Flickr30k datasets. Remarkably,

we improve the state-of-the-art BLEU-4 score by 3.1 points on COCO.

98



Model B-4 M C

S2VT (Venugopalan et al., 2015a) ´ 0.292 ´

LSTM-E (Pan et al., 2016) 0.453 0.310 ´

GRU-RCN (Ballas et al., 2016) 0.479 0.311 0.678
h-RNN (Yu et al., 2016) 0.499 0.326 0.658

LSTM-R 0.448 0.310 0.640
LSTM-C 0.445 0.309 0.644
LSTM-CR 0.469 0.317 0.688
LSTM-T 0.473 0.324 0.699
LSTM-CRT 0.475 0.316 0.647
LSTM-CRT2 0.469 0.326 0.706

SCN-LSTM 0.502 0.334 0.770
SCN-LSTM Ensemble of 5 0.511 0.335 0.777

Table 5.4: Results on BLEU-4 (B-4), METEOR (M) and CIDEr-D (C) metrices
compared to other state-of-the-art results and baselines on Youtube2Text.

Performance on COCO test server We also evaluate the proposed SCN-LSTM model

by uploading results to the online COCO test server. Table 5.3 shows the comparison

to the published state-of-the-art image captioning models on the blind test set as

reported by the COCO test server. We include the models that have been published

and perform at top-3 in the table. Compared to these methods, our proposed SCN-

LSTM model achieves the best performance across all the evaluation metrics on both

c5 and c40 testing sets.2

Performance on Youtube2Text Results on video captioning are presented in Table 5.4.

The SCN-LSTM achieves significantly better results over all competing methods in

all metrics, especially in CIDEr-D. For self-comparison, it is also worth noting that

our model improves over LSTM-CRT2 by a substantial margin. Again, using an

overaching ensemble further enhances performance.

2 Please check https://competitions.codalab.org/competitions/3221#results for the most
recent results.

99

https://competitions.codalab.org/competitions/3221#results


5.4.5 Qualitative analysis

Figure 5.3 shows three examples to illustrate the semantic composition on caption

generation. Our model properly describes the image content by using the correctly

detected tags. By manually replacing specific tags, our model can adjust the caption

smoothly. For example, in the left image, by replacing the tag “grass” with “bed”,

our model imagines “a dog laying on top of a bed”. Our model is also able to generate

novel captions that are highly unlikely to occur in real life. For instance, in the middle

image, by replacing the tag “road” and “street” with “ocean”, our model imagines

“a bus driving in the ocean”; in the right image, by replacing the tag “field” with

“snow”, our model dreams “a group of zebras standing in the snow”.

!

Tags: 
dog (1), grass (0.996), 
laying (0.97), outdoor 
(0.943), next (0.788), 
sitting (0.651), lying 
(0.542), white (0.507) !

Tags: 
road (1), decker (1), double 
(0.999), bus (0.996), red 
(0.996), street (0.926), 
building (0.859), driving 
(0.796) !

Tags: 
zebra (1), animal (0.985), 
mammal (0.948), dirt 
(0.937), grass (0.902), 
standing (0.878), group 
(0.848), field (0.709) 

Caption generated by our model: 
    a dog laying on the ground next to a frisbee 
Semantic composition:  
1. Replace “dog” with “cat”:  
    a white cat laying on the ground 
2. Replace “grass” with “bed”:  
    a white dog laying on top of a bed 
3. Replace “grass” with “laptop”:  
    a dog laying on the ground next to a laptop!

Caption generated by our model: 
    a red double decker bus driving down a street 
Semantic composition:  
1. Replace “red” with “blue”:  
    a blue double decker bus driving down a street 
2. Replace “bus” with “train”:  
    a red train traveling down a city street 
3. Replace “road” and “street” with “ocean”:  
    a red bus is driving in the ocean!

Caption generated by our model: 
    a herd of zebra standing on top of a dirt field 
Semantic composition:  
1. Replace “zebra” with “horse”:  
    a group of horses standing in a field 
2. Replace “standing” with “running”:  
    a herd of zebra running across a dirt field 
3. Replace “field” with “snow”:  
    a group of zebras standing in the snow!

!
Figure 5.3: Illustration of semantic composition. Our model can adjust the caption
smoothly as the semantic concepts are modified.

!

Tags: 
indoor (0.952), dog 
(0.828), sitting (0.647), 
stuffed (0.602), white 
(0.544), next (0.527), 
laying (0.509), cat (0.402)! !

Tags: 
snow(1), outdoor (0.992), 
covered (0.847), nature 
(0.812), skiing (0.61), man 
(0.451), pile (0.421), 
building (0.369) !

Tags: 
person (1), cabinet (0.931), 
man (0.906), shelf (0.771), 
table (0.707), front (0.683), 
holding (0.662), food 
(0.587) 

Generated captions: 
SCN-LSTM-T: a dog laying on top of a stuffed 
animal 
SCN-LSTM: a teddy bear laying on top of a 
stuffed animal!

Generated captions: 
SCN-LSTM-T: a person that is standing in the 
snow 
SCN-LSTM: a stop sign is covered in the snow!

Generated captions: 
SCN-LSTM-T: a man sitting at a table with a 
plate of food 
SCN-LSTM: a man is holding a glass of wine!

!
Figure 5.4: Detected tags and sentence generation on COCO, by SCN-LSTM-T
and SCN-LSTM.

SCN not only picks up the tags well (and imagines the corresponding scenes),

100



but also selects the right functional words for different concepts to form syntactically

correct caption. As illustrated in sentence 6 of Figure 5.1(b), by replacing the tag

“baby” with “girl”, the generated captions not only changes “a baby” to “a little

girl”, but more importantly, changes “in its mouth” to “in her mouth”. In addition,

the SCN also infers the underlying semantic relatedness between different tags. As

illustrated in sentence 4 of Figure 5.1(b), when only switching on the tag “mouth”,

the generated caption becomes “a man with a toothbrush”, indicating the seman-

tic closeness between “mouth”, “man” and “toothbrush”. By further switching on

“baby”, we generate a more detailed description “a baby brushing its teeth”.

!

Tags: 
book (1), shelf (1), table 
(0.965), sitting (0.955), 
person (0.955), library 
(0.908), room (0.829), 
front (0.464) !

Tags: 
person (1), table (0.822), 
wine (0.672), people 
(0.657), man (0.62), 
woman (0.601), sitting 
(0.502), holding (0.494) !

Tags: 
grass (1), red (0.982), fire 
(0.953), hydrant (0.852), dog 
(0.723), standing (0.598), 
next (0.476), field (0.341) 

Generated captions: 
LSTM-R: a young girl is playing a video game 
LSTM-RT2: a group of people sitting at a table 
SCN-LSTM: two women sitting at a table in a 
library!

Generated captions: 
LSTM-R: a group of people standing around a 
table eating food 
LSTM-RT2: a group of people sitting at a table 
SCN-LSTM: a man pouring wine into a wine 
glass!

Generated captions: 
LSTM-R: a dog that is sitting on the ground 
LSTM-RT2: a dog standing next to a fire hydrant 
SCN-LSTM: a dog standing next to a red fire 
hydrant!

!
Figure 5.5: Detected tags and sentence generation on COCO, by LSTM-R, LSTM-
RT2, and SCN-LSTM.

!   

Tags: 
man (0.806), game (0.629), playing (0.577), 
ball (0.555), football (0.522), men (0.435), 
running (0.386), soccer (0.252)!

Tags: 
man (0.976), person (0.881), guy (0.603), 
boy (0.456), gun (0.41), shooting (0.269), 
movie (0.232), standing (0.209) 

Tags: 
man (0.808), person (0.603), street 
(0.522), road (0.512), doing (0.424), riding 
(0.405), running (0.397), walking (0.296) 

Generated captions: 
LSTM-CR: a man is running 
LSTM-CRT2: a man is hitting a goal 
SCN-LSTM: the men are playing soccer!

Generated captions: 
LSTM-CR: a man is playing a guitar 
LSTM-CRT2: a man is playing with a 
machine 
SCN-LSTM: a man is shooting a gun 

Generated captions: 
LSTM-CR: a man is walking 
LSTM-CRT2: a man is dancing 
SCN-LSTM: a man is running 

!
Figure 5.6: Detected tags and sentence generation on Youtube2Text, by LSTM-
CR, LSTM-CRT2, and SCN-LSTM.

The above analysis shows the importance of tags in generating captions. However,

SCN generates captions using both semantic concepts and the global visual feature

101



vector. The language model learns to assemble semantic concepts (weighted by

their likelihood), in consideration of the global visual information, into a coherent

meaningful sentence that captures the overall meaning of the image. In order to

demonstrate the importance of visual feature vectors, we train another SCN-LSTM-

T model, which is a SCN-LSTM model without the visual feature inputs, i.e., with

only tag inputs . As shown in the first example of Figure 5.4, the image tagger detects

“dog” with high probability. Using only tag inputs, SCN-LSTM-T can only generate

the wrong caption “a dog laying on top of a stuffed animal”. With additional visual

feature inputs, our SCN-LSTM model correctly replaces “dog” with “teddy bear” .

We further present examples of generated captions on COCO with various other

methods in Figure 5.5, along with the detected tags. As can be seen, our model

often generates more reasonable captions than LSTM-R, due to the use of high-level

semantic concepts. For example, in the first image, LSTM-R outputs an irrelevant

caption to the image, while the detection of “table” and “library” helps our model to

generate more sensible caption. Further, although both our model and LSTM-RT2

utilize detected tags for caption generation, our model often depicts the image content

more comprehensively; LSTM-RT2 has a larger potential to miss important details

in the image. For instance, in the 3rd image, the tag “red” appears in the caption

generated by our model, which is missed by LSTM-RT2. This observation might be

due to the fact that the SCN provides a better approach to fuse tag information into

the process of caption generation. Similiar observations can also be found in the

video captioning experiments, as demonstrated in Figure 5.6.

5.5 Conclusion

We have presented Semantic Compositional Network (SCN), a new framework to

effectively compose the individual semantic meaning of tags for visual captioning.

The SCN extends each weight matrix of the conventional LSTM to be a three-

102



way matrix product, with one of these matrices dependent on the inferred tags.

Consequently, the SCN can be viewed an ensemble of tag-dependent LSTM bases,

with the contribution of each LSTM basis unit proportional to the likelihood that

the tag is present in the image. Experiments conducted on three visual captioning

datasets validate the superiority of the proposed approach.

5.6 Supplementary Material

5.6.1 More results for Figure 5.4

!

Tags: 
outdoor (1), elephant 
(0.995), animal (0.988), 
grass (0.962), standing 
(0.89), rock (0.781), zoo 
(0.682), enclosure (0.619)! !

Tags: 
indoor (0.966), table 
(0.919), food (0.849), 
kitchen (0.714), sitting 
(0.545), counter (0.436), 
top (0.285), doughnut 
(0.251) !

Tags: 
outdoor (0.998), building 
(0.996), man (0.613), front 
(0.434), standing (0.333), 
woman (0.255), walking 
(0.249), next (0.247) 

Generated captions: 
SCN-LSTM-T: a couple of elephants standing 
next to each other 
SCN-LSTM: a large elephant standing next to 
a tree!

Generated captions: 
SCN-LSTM-T: a kitchen with a lot of food on 
it 
SCN-LSTM: a bunch of doughnuts sitting on 
top of a counter!

Generated captions: 
SCN-LSTM-T: a man standing in front of a 
building 
SCN-LSTM: a statue of a man standing next to a 
building!

!

Tags: 
table (0.997), indoor 
(0.893), chair (0.876), 
room (0.692), sitting 
(0.583), window (0.58), 
wooden (0.542), small 
(0.344) !

Tags: 
fence (1), giraffe (0.994), 
animal (0.921), wooden 
(0.677), fenced (0.66), 
standing (0.592), next 
(0.493), zoo (0.442) !

Tags: 
grass (1), outdoor (0.992), 
giraffe (0.985), mammal 
(0.98), animal (0.978), field 
(0.93), eating (0.558), 
standing (0.508) 

Generated captions: 
SCN-LSTM-T: a dining room with a table and 
chairs 
SCN-LSTM: a wooden table with a laptop on it 

Generated captions: 
SCN-LSTM-T: a giraffe standing next to a 
wooden fence 
SCN-LSTM: a couple of giraffe standing next 
to each other 

Generated captions: 
SCN-LSTM-T: a giraffe standing on top of a lush 
green field 
SCN-LSTM: a giraffe is eating grass in a field 

!
Figure 5.7: More detected tags and sentence generation on COCO, by SCN-LSTM-
T and SCN-LSTM.

103



5.6.2 More results on image captioning

!

Tags: 
polar (0.999), rock 
(0.998), animal (0.997), 
bear (0.993), mammal 
(0.988), zoo (0.881), 
white (0.779), large 
(0.748) !

Tags: 
refrigerator (0.992), food 
(0.976), open (0.97), 
cabinet (0.953), shelf 
(0.582), filled (0.45), door 
(0.426), lots (0.329) !

Tags: 
person (0.925), building 
(0.839), people (0.787), 
umbrella (0.779), group 
(0.704), child (0.519), 
standing (0.369), holding 
(0.272) 

Generated captions: 
LSTM-R: a polar bear standing on top of a 
rock 
LSTM-RT2: a polar bear standing on a rock 
SCN-LSTM: a large white polar bear standing 
on a rock 

Generated captions: 
LSTM-R: a display case filled with lots of food 
LSTM-RT2: a shelf full of different kinds of 
food 
SCN-LSTM: a refrigerator filled with lots of 
food and drinks 

Generated captions: 
LSTM-R: a group of people standing next to 
each other 
LSTM-RT2: a group of people standing in front 
of an umbrella 
SCN-LSTM: a group of people standing in the 
rain with umbrellas 

!

Tags: 
bicycle (1), parked 
(0.923), next (0.889), 
group (0.829), sidewalk 
(0.783), many (0.698), lot 
(0.611), rack (0.596) !

Tags: 
food (0.939), oranges 
(0.839), fruit (0.836), slice 
(0.792), sliced (0.783), 
orange (0.764), plate 
(0.759), table (0.704)! !

Tags: 
clock (1), building (0.999), 
large (0.902), station 
(0.876), mounted (0.644), 
sitting (0.621), tower 
(0.574), building (0.418) 

Generated captions: 
LSTM-R: a group of motorcycles parked next 
to each other 
LSTM-RT2: a row of bikes parked in a row 
SCN-LSTM: a bunch of bikes parked in a park 
lot!

Generated captions: 
LSTM-R: a bowl of fruit sitting on top of a table 
LSTM-RT2: a bunch of oranges sitting on a 
table 
SCN-LSTM: a bunch of oranges sitting on a 
plate!

Generated captions: 
LSTM-R: a clock on the wall of a building 
LSTM-RT2: a clock on the side of a building  
SCN-LSTM: a large clock mounted to the side 
of a building!

!

Tags: 
dog (1), water (0.998), 
beach (0.805), standing 
(0.666), walking (0.451), 
next (0.435), ocean 
(0.301), white (0.225)! !

Tags: 
water (0.985), beach 
(0.975), ocean (0.655), next 
(0.493), shore (0.324), sand 
(0.288), sandy (0.209), 
bench(0.204)! !

Tags: 
bench (0.997), fence (0.98), 
park (0.974), grass (0.877), 
sitting (0.771), wooden 
(0.582), next (0.511), green 
(0.377)!

Generated captions: 
LSTM-R: a dog that is playing with a frisbee 
LSTM-RT2: a couple of dogs standing on a 
beach 
SCN-LSTM: a white dog walking on a beach 

Generated captions: 
LSTM-R: a bench that is sitting on the beach 
LSTM-RT2: a person sitting on a bench on a 
beach 
SCN-LSTM: a wooden bench sitting on top of a 
sandy beach!

Generated captions: 
LSTM-R: a park bench sitting in the middle of a 
forest 
LSTM-RT2: a park bench sitting on a park bench 
SCN-LSTM: a wooden bench sitting in the 
middle of a park!

!

Tags: 
road (0.958), street 
(0.911), green (0.856), 
sign (0.601), traffic 
(0.549), car (0.401), truck 
(0.382), city (0.374) !

Tags: 
person (0.958), woman 
(0.728), sitting (0.708), 
bench (0.394), people 
(0.381), next (0.371), group 
(0.361), front (0.311) !

Tags: 
person (0.932), man 
(0.787), young (0.458), 
black (0.439), white (0.43), 
jumping (0.342), riding 
(0.242), trick (0.156) 

Generated captions: 
LSTM-R: a bus that is driving down the road 
LSTM-RT2: a bus parked on the side of a road 
SCN-LSTM: a green bus driving down a city 
street!

Generated captions: 
LSTM-R: a couple of women standing next to 
each other 
LSTM-RT2: a couple of people sitting on a toilet 
SCN-LSTM: a group of people sitting on a 
bench!

Generated captions: 
LSTM-R: a man sitting on top of a wooden 
bench 
LSTM-RT2: a man riding a skateboard down a 
street 
SCN-LSTM: a black and white photo of a 
skateboarder doing a trick!

!
Figure 5.8: More detected tags and sentence generation on COCO, by LSTM-R,
LSTM-RT2 and SCN-LSTM.

104



5.6.3 More results on video captioning

! ! !   

Tags: 
playing (0.694), animal (0.673), baby 
(0.63), person (0.471), eating (0.419), 
something (0.333), food (0.329), hand 
(0.311)!

Tags: 
man (0.807), person (0.733), car (0.442), 
driving (0.39), playing (0.382), road 
(0.365), moving (0.189), pushing (0.129) 

Tags: 
woman (0.88), girl (0.732), lady (0.699), 
making (0.516), something (0.501), water 
(0.267), glass (0.244), drinking (0.204) 

Generated captions: 
LSTM-CR: a person is eating 
LSTM-CRT2: a person is holding a small 
animal 
SCN-LSTM: a small animal is eating!

Generated captions: 
LSTM-CR: a man is doing a wheelie 
LSTM-CRT2: a man is riding a bike 
SCN-LSTM: a man is pushing a car 

Generated captions: 
LSTM-CR: a woman is pouring sugar in a 
glass 
LSTM-CRT2: a woman is pouring water 
SCN-LSTM: a woman is drinking 
something 

!   

Tags: 
man (0.635), woman (0.545), riding 
(0.541), person (0.465), water (0.465), girl 
(0.4), doing (0.387), horse (0.132)!

Tags: 
man (0.843), person (0.774), doing (0.393), 
playing (0.385), open (0.298), gun (0.283), 
shooting (0.276), field (0.259) 

Tags: 
man (0.958), song (0.869), stage (0.866), 
singing (0.859), men (0.845), music 
(0.826), playing (0.762), guitar (0.759) 

Generated captions: 
LSTM-CR: a girl is riding a horse 
LSTM-CRT2: a woman is riding a horse 
SCN-LSTM: a man is riding a horse!

Generated captions: 
LSTM-CR: a girl is firing a gun 
LSTM-CRT2: a girl is shooting 
SCN-LSTM: a man is shooting a gun 

Generated captions: 
LSTM-CR: a group of people are dancing 
on stage 
LSTM-CRT2: a man is dancing on stage 
SCN-LSTM: a band is performing on stage 

!     

Tags: 
doing (0.616), boy (0.557), room (0.554), 
playing (0.51), floor (0.493), dancing 
(0.491), dance (0.361), kid (0.281)!

Tags: 
woman (0.829), girl (0.743), doing (0.593), 
using (0.408), makeup (0.211), applying 
(0.2), face (0.171), hand (0.139) 

Tags: 
playing (0.776), dog (0.625), floor (0.423), 
trying (0.399), woman (0.356), running 
(0.293), puppy (0.202), toy (0.182) 

Generated captions: 
LSTM-CR: a baby is walking 
LSTM-CRT2: a baby is dancing 
SCN-LSTM: a boy is dancing!

Generated captions: 
LSTM-CR: a girl is singing 
LSTM-CRT2: a woman is playing 
SCN-LSTM: a woman is plucking her 
eyebrow 

Generated captions: 
LSTM-CR: a group of girls are playing 
with a toy 
LSTM-CRT2: the children are playing 
SCN-LSTM: a dog is playing with a toy 

!
Figure 5.9: More detected tags and sentence generation on Youtube2Text, by
LSTM-CR, LSTM-CRT2 and SCN-LSTM.

105



6

Triangle Generative Adversarial Networks

In this chapter, I will present Triangle Generative Adversarial Networks (∆-GAN)

for cross-domain joint distribution matching. ∆-GAN consists of two generators

and two discriminators. The generators are designed to learn the two-way condi-

tional distributions between the two domains, while the discriminators are trained

to distinguish real data pairs and two kinds of fake data pairs.

6.1 Introduction

Generative adversarial networks (GANs) (Goodfellow et al., 2014) have emerged as

a powerful framework for learning generative models of arbitrarily complex data

distributions. When trained on datasets of natural images, significant progress has

been made on generating realistic and sharp-looking images (Denton et al., 2015;

Radford et al., 2016). The original GAN formulation was designed to learn the data

distribution in one domain. In practice, one may also be interested in matching two

joint distributions. This is an important task, since mapping data samples from

one domain to another has a wide range of applications. For instance, matching

106



the joint distribution of image-text pairs allows simultaneous image captioning and

text-conditional image generation (Reed et al., 2016), while image-to-image transla-

tion (Isola et al., 2017) is another challenging problem that requires matching the

joint distribution of image-image pairs.

In this work, we are interested in designing a GAN framework to match joint

distributions. If paired data are available, a simple approach to achieve this is to

train a conditional GAN model (Reed et al., 2016; Mirza and Osindero, 2014), from

which a joint distribution is readily manifested and can be matched to the empirical

joint distribution provided by the paired data. However, fully supervised data are

often difficult to acquire. Several methods have been proposed to achieve unsuper-

vised joint distribution matching without any paired data, including DiscoGAN (Kim

et al., 2017), CycleGAN (Zhu et al., 2017) and DualGAN (Yi et al., 2017). Adver-

sarially Learned Inference (ALI) (Dumoulin et al., 2017) and Bidirectional GAN

(BiGAN) (Donahue et al., 2017) can be readily adapted to this case as well. Though

empirically achieving great success, in principle, there exist infinitely many possible

mapping functions that satisfy the requirement to map a sample from one domain to

another. In order to alleviate this nonidentifiability issue, paired data are needed to

provide proper supervision to inform the model the kind of joint distributions that

are desired.

This motivates the proposed Triangle Generative Adversarial Network (∆-GAN),

a GAN framework that allows semi-supervised joint distribution matching, where

the supervision of domain correspondence is provided by a few paired samples. ∆-

GAN consists of two generators and two discriminators. The generators are designed

to learn the bidirectional mappings between domains, while the discriminators are

trained to distinguish real data pairs and two kinds of fake data pairs. Both the

generators and discriminators are trained together via adversarial learning.

∆-GAN bears close resemblance to Triple GAN (Li et al., 2017b), a recently

107



Figure 6.1: Illustration of the Triangle Generative Adversarial Network (∆-GAN).

proposed method that can also be utilized for semi-supervised joint distribution

mapping. However, there exist several key differences that make our work unique.

First, ∆-GAN uses two discriminators in total, which implicitly defines a ternary

discriminative function, instead of a binary discriminator as used in Triple GAN.

Second, ∆-GAN can be considered as a combination of conditional GAN and ALI,

while Triple GAN consists of two conditional GANs. Third, the distributions char-

acterized by the two generators in both ∆-GAN and Triple GAN concentrate to

the data distribution in theory. However, when the discriminator is optimal, the

objective of ∆-GAN becomes the Jensen-Shannon divergence (JSD) among three

distributions, which is symmetric; the objective of Triple GAN consists of a JSD

term plus a Kullback-Leibler (KL) divergence term. The asymmetry of the KL term

makes Triple GAN more prone to generating fake-looking samples (Arjovsky and

Bottou, 2017). Lastly, the calculation of the additional KL term in Triple GAN is

equivalent to calculating a supervised loss, which requires the explicit density form

of the conditional distributions, which may not be desirable. On the other hand,

∆-GAN is a fully adversarial approach that does not require that the conditional

densities can be computed; ∆-GAN only require that the conditional densities can

108



be sampled from in a way that allows gradient backpropagation.

∆-GAN is a general framework, and can be used to match any joint distributions.

In experiments, in order to demonstrate the versatility of the proposed model, we con-

sider three domain pairs: image-label, image-image and image-attribute pairs, and

use them for semi-supervised classification, image-to-image translation and attribute-

based image editing, respectively. In order to demonstrate the scalability of the model

to large and complex datasets, we also present attribute-conditional image generation

on the COCO dataset (Lin et al., 2014).

6.2 Model

6.2.1 Triangle Generative Adversarial Networks (∆-GANs)

We now extend GAN to ∆-GAN for joint distribution matching. We first consider

∆-GAN in the supervised setting, and then discuss semi-supervised learning in Sec-

tion 6.2.3. Consider two related domains, with x and y being the data samples for

each domain. We have fully-paired data samples that are characterized by the joint

distribution ppx,yq, which also implies that samples from both the marginal ppxq

and ppyq can be easily obtained.

∆-GAN consists of two generators: (i) a generator Gxpyq that defines the con-

ditional distribution pxpx|yq, and (ii) a generator Gypxq that characterizes the con-

ditional distribution in the other direction pypy|xq. Gxpyq and Gypxq may also

implicitly contain a random latent variable z as input, i.e., Gxpy, zq and Gypx, zq.

In the ∆-GAN game, after a sample x is drawn from ppxq, the generator Gy produces

a pseudo sample ỹ following the conditional distribution pypy|xq. Hence, the fake

data pair px, ỹq is a sample from the joint distribution pypx,yq “ pypy|xqppxq. Sim-

ilarly, a fake data pair px̃,yq can be sampled from the generator Gx by first drawing

y from ppyq and then drawing x̃ from pxpx|yq; hence px̃,yq is sampled from the

joint distribution pxpx,yq “ pxpx|yqppyq. As such, the generative process between

109



pxpx,yq and pypx,yq is reversed.

The objective of ∆-GAN is to match the three joint distributions: ppx,yq,

pxpx,yq and pypx,yq. If this is achieved, we are ensured that we have learned a

bidirectional mapping pxpx|yq and pypy|xq that guarantees the generated fake data

pairs px̃,yq and px, ỹq are indistinguishable from the true data pairs px,yq. In or-

der to match the joint distributions, an adversarial game is played. Joint pairs are

drawn from three distributions: ppx,yq, pxpx,yq or pypx,yq, and two discrimina-

tor networks are learned to discriminate among the three, while the two conditional

generator networks are trained to fool the discriminators.

The value function describing the game is given by

min
Gx,Gy

max
D1,D2

V pGx, Gy, D1, D2q “ Epx,yq„ppx,yqrlogD1px,yqs (6.1)

` Ey„ppyq,x̃„pxpx|yq
”

log
´

p1´D1px̃,yqq ¨D2px̃,yq
¯ı

` Ex„ppxq,ỹ„pypy|xq
”

log
´

p1´D1px, ỹqq ¨ p1´D2px, ỹqq
¯ı

.

The discriminator D1 is used to distinguish whether a sample pair is from ppx,yq

or not, if this sample pair is not from ppx,yq, another discriminator D2 is used to

distinguish whether this sample pair is from pxpx,yq or pypx,yq. D1 and D2 work

cooperatively, and the use of both implicitly defines a ternary discriminative function

D that distinguish sample pairs in three ways. See Figure 6.1 for an illustration of

the adversarial game and Section 6.6.2 for an algorithmic description of the training

procedure.

6.2.2 Theoretical analysis

∆-GAN shares many of the theoretical properties of GANs (Goodfellow et al.,

2014). We first consider the optimal discriminators D1 and D2 for any given gen-

erator Gx and Gy. These optimal discriminators then allow reformulation of objec-

110



tive (6.1), which reduces to the Jensen-Shannon divergence among the joint distri-

bution ppx,yq, pxpx,yq and pypx,yq.

Proposition 1. For any fixed generator Gx and Gy, the optimal discriminator D1

and D2 of the game defined by V pGx, Gy, D1, D2q is

D˚1 px,yq “
ppx,yq

ppx,yq ` pxpx,yq ` pypx,yq
, D˚2 px,yq “

pxpx,yq

pxpx,yq ` pypx,yq
.

Proof. The proof is a straightforward extension of the proof in Goodfellow et al.

(2014). See Section 6.6.1 for details.

Proposition 2. The equilibrium of V pGx, Gy, D1, D2q is achieved if and only if

ppx,yq “ pxpx,yq “ pypx,yq with D˚1 px,yq “
1
3

and D˚2 px,yq “
1
2
, and the op-

timum value is ´3 log 3.

Proof. Given the optimal D˚1 px,yq and D˚2 px,yq, the minimax game can be refor-

mulated as:

CpGx, Gyq “ max
D1,D2

V pGx, Gy, D1, D2q (6.2)

“ ´3 log 3` 3 ¨ JSD
´

ppx,yq, pxpx,yq, pypx,yq
¯

ě ´3 log 3 , (6.3)

where JSD denotes the Jensen-Shannon divergence (JSD) among three distributions.

See Section 6.6.1 for details.

Since ppx,yq “ pxpx,yq “ pypx,yq can be achieved in theory, it can be readily

seen that the learned conditional generators can reveal the true conditional distribu-

tions underlying the data, i.e., pxpx|yq “ ppx|yq and pypy|xq “ ppy|xq.

111



6.2.3 Semi-supervised learning

In order to further understand ∆-GAN, we write (6.1) as

V “Eppx,yqrlogD1px,yqs ` Epxpx̃,yqrlogp1´D1px̃,yqqs ` Epypx,ỹqrlogp1´D1px, ỹqqs
looooooooooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooooooooon

conditional GAN

(6.4)

`Epxpx̃,yqrlogD2px̃,yqs ` Epypx,ỹqrlogp1´D2px, ỹqqs
looooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooon

BiGAN/ALI

. (6.5)

The objective of ∆-GAN is a combination of the objectives of conditional GAN and

BiGAN. The BiGAN part matches two joint distributions: pxpx,yq and pypx,yq,

while the conditional GAN part provides the supervision signal to notify the BiGAN

part what joint distribution to match. Therefore, ∆-GAN provides a natural way to

perform semi-supervised learning, since the conditional GAN part and the BiGAN

part can be used to account for paired and unpaired data, respectively.

However, when doing semi-supervised learning, there is also one potential problem

that we need to be cautious about. The theoretical analysis in Section 6.2.2 is based

on the assumption that the dataset is fully supervised, i.e., we have the ground-

truth joint distribution ppx,yq and marginal distributions ppxq and ppyq. In the

semi-supervised setting, ppxq and ppyq are still available but ppx,yq is not. We

can only obtain the joint distribution plpx,yq characterized by the few paired data

samples. Hence, in the semi-supervised setting, pxpx,yq and pypx,yq will try to

concentrate to the empirical distribution plpx,yq. We make the assumption that

plpx,yq « ppx,yq, i.e., the paired data can roughly characterize the whole dataset.

For example, in the semi-supervised classification problem, one usually strives to

make sure that labels are equally distributed among the labeled dataset.

112



6.2.4 Relation to Triple GAN

∆-GAN is closely related to Triple GAN (Li et al., 2017b). Below we review Triple

GAN and then discuss the main differences. The value function of Triple GAN is

defined as follows:

V “Eppx,yqrlogDpx,yqs ` p1´ αqEpxpx̃,yqrlogp1´Dpx̃,yqqs

`αEpypx,ỹqrlogp1´Dpx, ỹqqs ` Eppx,yqr´ log pypy|xqs , (6.6)

where α P p0, 1q is a contant that controls the relative importance of the two gen-

erators. Let Triple GAN-s denote a simplified Triple GAN model with only the

first three terms. As can be seen, Triple GAN-s can be considered as a com-

bination of two conditional GANs, with the importance of each condtional GAN

weighted by α. It can be proven that Triple GAN-s achieves equilibrium if and only

if ppx,yq “ p1 ´ αqpxpx,yq ` αpypx,yq, which is not desirable. To address this

problem, in Triple GAN a standard supervised loss RL “ Eppx,yqr´ log pypy|xqs is

added. As a result, when the discriminator is optimal, the cost function in Triple

GAN becomes:

2JSD
´

ppx,yq||pp1´ αqpxpx,yq ` αpypx,yqq
¯

`KLpppx,yq||pypx,yqq ` const.

(6.7)

This cost function has the good property that it has a unique minimum at ppx,yq “

pxpx,yq “ pypx,yq. However, the objective becomes asymmetrical. The second KL

term pays low cost for generating fake-looking samples (Arjovsky and Bottou, 2017).

By contrast ∆-GAN directly optimizes the symmetric Jensen-Shannon divergence

among three distributions. More importantly, the calculation of Eppx,yqr´ log pypy|xqs

in Triple GAN also implies that the explicit density form of pypy|xq should be

provided, which may not be desirable. On the other hand, ∆-GAN only requires

that pypy|xq can be sampled from. For example, if we assume pypy|xq “
ş

δpy ´

113



Gypx, zqqppzqdz, and δp¨q is the Dirac delta function, we can sample y through

sampling z, however, the density function of pypy|xq is not explicitly available.

6.2.5 Applications

∆-GAN is a general framework that can be used for any joint distribution matching.

Besides the semi-supervised image classification task considered in Li et al. (2017b),

we also conduct experiments on image-to-image translation and attribute-conditional

image generation. When modeling image pairs, both pxpx|yq and pypy|xq are imple-

mented without introducing additional latent variables, i.e., pxpx|yq “ δpx´Gxpyqq,

pypy|xq “ δpy ´Gypxqq.

A different strategy is adopted when modeling the image-label/attribute pairs.

Specifically, let x denote samples in the image domain, y denote samples in the

label/attribute domain. y is a one-hot vector or a binary vector when representing

labels and attributes, respectively. When modeling pxpx|yq, we assume that x is

transformed by the latent style variables z given the label or attribute vector y, i.e.,

pxpx|yq “
ş

δpx´Gxpy, zqqppzqdz, where ppzq is chosen to be a simple distribution

(e.g., uniform or standard normal). When learning pypy|xq, pypy|xq is assumed to

be a standard multi-class or multi-label classfier without latent variables z. In order

to allow the training signal backpropagated from D1 and D2 to Gy, we adopt the

REINFORCE algorithm as in Li et al. (2017b), and use the label with the maximum

probability to approximate the expectation over y, or use the output of the sigmoid

function as the predicted attribute vector.

6.3 Related work

The proposed framework focuses on designing GAN for joint-distribution matching.

Conditional GAN can be used for this task if supervised data is available. Various

conditional GANs have been proposed to condition the image generation on class

114



labels (Mirza and Osindero, 2014), attributes (Perarnau et al., 2016), texts (Reed

et al., 2016; Zhang et al., 2017a; Xu et al., 2017) and images (Isola et al., 2017;

Ledig et al., 2017). Unsupervised learning methods have also been developed for this

task. BiGAN (Donahue et al., 2017) and ALI (Dumoulin et al., 2017) proposed a

method to jointly learn a generation network and an inference network via adversarial

learning. Though originally designed for learning the two-way transition between the

stochastic latent variables and real data samples, BiGAN and ALI can be directly

adapted to learn the joint distribution of two real domains. Another method is

called DiscoGAN (Kim et al., 2017), in which two generators are used to model the

bidirectional mapping between domains, and another two discriminators are used to

decide whether a generated sample is fake or not in each individual domain. Further,

additional reconstructon losses are introduced to make the two generators strongly

coupled and also alleviate the problem of mode collapsing. Similiar work includes

CycleGAN (Zhu et al., 2017), DualGAN (Yi et al., 2017) and DTN (Taigman et al.,

2017). Additional weight-sharing constraints are introduced in CoGAN (Liu and

Tuzel, 2016) and UNIT (Liu et al., 2017).

Our work differs from the above work in that we aim at semi-supervised joint

distribution matching. The only work that we are aware of that also achieves this

goal is Triple GAN. However, our model is distinct from Triple GAN in important

ways (see Section 6.2.4). Further, Triple GAN only focuses on image classification,

while ∆-GAN has been shown to be applicable to a wide range of applications.

Various methods and model architectures have been proposed to improve and

stabilize the training of GAN, such as feature matching (Salimans et al., 2016;

Zhang et al., 2016c, 2017b), Wasserstein GAN (Arjovsky et al., 2017), energy-based

GAN (Zhao et al., 2017), and unrolled GAN (Metz et al., 2017) among many other

related works. Our work is orthogonal to these methods, which could also be used to

improve the training of ∆-GAN. Instead of using adversarial loss, there also exists

115



(a) real data                         (b) Triangle GAN (c) Triple GAN

Figure 6.2: Toy data experiment on ∆-GAN and Triple GAN.

work that uses supervised learning (Xia et al., 2017) for joint-distribution matching,

and variational autoencoders for semi-supervised learning (Pu et al., 2016b, 2017b).

Lastly, our work is also closely related to the recent work of Li et al. (2017a); Pu

et al. (2017a); Chen et al. (2018), which treats one of the domains as latent variables.

6.4 Experiments

We present results on three tasks: (i) semi-supervised classification on CIFAR10 (Krizhevsky,

2009); (ii) image-to-image translation on MNIST (LeCun et al., 1998) and the

edges2shoes dataset (Isola et al., 2017); and (iii) attribute-to-image generation on

CelebA (Liu et al., 2015) and COCO (Lin et al., 2014). We also conduct a toy

data experiment to further demonstrate the differences between ∆-GAN and Triple

GAN. We implement ∆-GAN without introducing additional regularization unless

explicitly stated. All the network architectures are provided in the Appendix.

6.4.1 Toy data experiment

We first compare our method with Triple GAN on a toy dataset. We synthesize data

by drawing px, yq „ 1
4
N pµ1,Σ1q `

1
4
N pµ2,Σ2q `

1
4
N pµ3,Σ3q `

1
4
N pµ4,Σ4q, where

µ1 “ r0, 1.5s
J, µ2 “ r´1.5, 0sJ, µ3 “ r1.5, 0s

J, µ4 “ r0,´1.5sJ, Σ1 “ Σ4 “ p
3 0
0 0.025 q

and Σ2 “ Σ3 “ p
0.025 0
0 3 q. We generate 5000 px, yq pairs for each mixture component.

116



Table 6.1: Error rates (%) on the partially labeled CIFAR10 dataset.

Algorithm n “ 4000

CatGAN (Springenberg, 2015) 19.58 ˘ 0.58

Improved GAN (Salimans et al., 2016) 18.63 ˘ 2.32

ALI (Dumoulin et al., 2017) 17.99 ˘ 1.62

Triple GAN (Li et al., 2017b) 16.99 ˘ 0.36

∆-GAN (ours) 16.80 ˘ 0.42

In order to implement ∆-GAN and Triple GAN-s, we model pxpx|yq and pypy|xq as

pxpx|yq “

ż

δpx´Gxpy, zqqppzqdz, pypy|xq “

ż

δpy ´Gypx, zqqppzqdz , (6.8)

where both Gx and Gy are modeled as a 4-hidden-layer multilayer perceptron (MLP)

with 500 hidden units in each layer. ppzq is a bivariate standard Gaussian distribu-

tion. Triple GAN can be implemented by specifying both pxpx|yq and pypy|xq to be

distributions with explicit density form, e.g., Gaussian distributions. However, the

performance can be bad since it fails to capture the multi-modality of pxpx|yq and

pypy|xq. Hence, only Triple GAN-s is implemented.

Results are shown in Figure 6.2. (a) presents the joint distribution ppx, yq of

real data. For (b) and (c), the left and right figure is the learned joint distribu-

tion pxpx, yq and pypx, yq, respectively. The joint distributions pxpx, yq and pypx, yq

learned by ∆-GAN successfully match the true joint distribution ppx, yq. Triple

GAN-s cannot achieve this, and can only guarantee 1
2
ppxpx, yq ` pypx, yqq matches

ppx, yq. Although this experiment is limited due to its simplicity, the results clearly

support the advantage of our proposed model over Triple GAN.

6.4.2 Semi-supervised classification

We evaluate semi-supervised classification on the CIFAR10 dataset with 4000 labels.

The labeled data is distributed equally across classes and the results are averaged

over 10 runs with different random splits of the training data. For fair comparison,

we follow the publically available code of Triple GAN and use the same regularization

117



Figure 6.3: Generated CIFAR10 samples, where each row shares the same label
and each column uses the same noise.

Table 6.2: Classification accuracy (%) on the MNIST-to-MNIST-transpose dataset.

Algorithm n “ 100 n “ 1000 All

DiscoGAN ´ ´ 15.00˘ 0.20

Triple GAN 63.79 ˘ 0.85 84.93 ˘ 1.63 86.70 ˘ 1.52

∆-GAN 83.20˘ 1.88 88.98˘ 1.50 93.34˘ 1.46

terms and hyperparameter settings as theirs. Results are summarized in Table 6.1.

Our ∆-GAN achieves the best performance among all the competing methods. We

also show the ability of ∆-GAN to disentangle classes and styles in Figure 6.3. ∆-

GAN can generate realistic data in a specific class and the injected noise vector

encodes meaningful style patterns like background and color.

6.4.3 Image-to-image translation

We first evaluate image-to-image translation on the edges2shoes dataset. Results

are shown in Figure 6.4(bottom). Though DiscoGAN is an unsupervised learning

method, it achieves impressive results. However, with supervision provided by 10%

paired data, ∆-GAN generally generates more accurate edge details of the shoes. In

118



-GANDiscoGAN

Input:

GT Output:

DiscoGAN:

-GAN:

Input:

Output:

Input:

Output:

Figure 6.4: Image-to-image translation experiments on the MNIST-to-MNIST-
transpose and edges2shoes datasets.

order to provide quantitative evaluation of translating shoes to edges, we use mean

squared error (MSE) as our metric. The MSE of using DiscoGAN is 140.1; with

10%, 20%, 100% paired data, the MSE of using ∆-GAN is 125.3, 113.0 and 66.4,

respectively.

To further demonstrate the importance of providing supervision of domain cor-

respondence, we created a new dataset based on MNIST (LeCun et al., 1998), where

the two image domains are the MNIST images and their corresponding tranposed

ones. As can be seen in Figure 6.4(top), ∆-GAN matches images betwen domains

well, while DiscoGAN fails in this task. For supporting quantitative evaluation, we

have trained a classifier on the MNIST dataset, and the classification accuracy of

this classifier on the test set approaches 99.4%, and is, therefore, trustworthy as an

evaluation metric. Given an input MNIST image x, we first generate a transposed

image y using the learned generator, and then manually transpose it back to normal

digits yT , and finally send this new image yT to the classifier. Results are summa-

rized in Table 6.2, which are averages over 5 runs with different random splits of the

training data. ∆-GAN achieves significantly better performance than Triple GAN

119



Big Nose, 
Black Hair, 
Bushy
Eyebrows, 
Male, Young, 
Sideburns 

Attractive, 
Smiling, High
Cheekbones, 
Mouth Slightly
Open, Wearing
Lipstick

Attractive, 
Black Hair, 
Male, High
Cheekbones, 
Smiling, 
Straight Hair

Big Nose, 
Chubby, 
Goatee, Male, 
Oval Face, 
Sideburns, 
Wearing Hat

Attractive,  
Blond Hair, No
Beard, Pointy
Nose, Straight
Hair, Arched
Eyebrows

High
Cheekbones, 
Mouth Slightly
Open, No
Beard, Oval
Face, Smiling

Attractive, 
Brown Hair, 
Heavy
Makeup, No
Beard, Wavy
Hair, Young

Attractive, 
Eyeglasses, No
Beard, Straight
Hair, Wearing
Lipstick, 
Young

Input 
images

Predicted 
attributes

Generated 
images

Figure 6.5: Results on the face-to-attribute-to-face experiment.

Table 6.3: Results of P@10 and nDCG@10 for attribute predicting on CelebA and
COCO.

Dataset CelebA

Method 1% 10% 100%

Triple GAN 40.97/50.74 62.13/73.56 70.12/79.37
∆-GAN 53.21/58.39 63.68/75.22 70.37/81.47

Dataset COCO

Method 10% 50% 100%

Triple GAN 32.64/35.91 34.00/37.76 35.35/39.60
∆-GAN 34.38/37.91 36.72/40.39 39.05/42.86

1st row + pale skin = 2nd row

1st row + mouth slightly open = 2nd row

1st row + eyeglasses = 2nd row

1st row + wearing hat = 2nd row

Figure 6.6: Results on the image editing experiment.

and DiscoGAN.

120



Input  Predicted attributes Generated images Input Predicted attributes Generated images 

 

baseball, standing, next, 
player, man, group, 
person, field, sport, ball, 
outdoor, game, grass, 
crowd !    

tennis, player, court, 
man, playing, field, 
racket, sport, swinging, 
ball, outdoor, holding, 
game, grass  

 

surfing, people, woman, 
water, standing, wave, 
man, top, riding, sport, 
ocean, outdoor, board!    

skiing, man, group, 
covered, day, hill, 
person, snow, riding, 
outdoor   

 

 

red, sign, street, next, 
pole, outdoor, stop, grass  !

   

pizza, rack, blue, grill, 
plate, stove, table, pan, 
holding, pepperoni, 
cooked 

 

 

sink, shower, indoor, 
tub, restroom, bathroom, 
small, standing, room, 
tile, white, stall, tiled, 
black, bath  !    

computer, laptop, room, 
front, living, indoor, 
table, desk 

 

!
Figure 6.7: Results on the image-to-attribute-to-image experiment.

6.4.4 Attribute-conditional image generation

We apply our method to face images from the CelebA dataset. This dataset consists

of 202,599 images annotated with 40 binary attributes. We scale and crop the images

to 64ˆ 64 pixels. In order to qualitatively evaluate the learned attribute-conditional

image generator and the multi-label classifier, given an input face image, we first

use the classifier to predict attributes, and then use the image generator to produce

images based on the predicted attributes. Figure 6.5 shows example results. The

1st row is the input images; the 2nd row is the predicted attributes given the input

images; the 3rd row is the generated images given the predicted attributes. Both the

learned attribute predictor and the image generator provides good results. We further

show another set of image editing experiment in Figure 6.6. For each subfigure, we

use a same set of attributes with different noise vectors to generate images. For

example, for the top-right subfigure, all the images in the 1st row were generated

based on the following attributes: black hair, female, attractive, and we then added

the attribute of “sunglasses” when generating the images in the 2nd row. It is

interesting to see that ∆-GAN has great flexibility to adjust the generated images

by changing certain input attribtutes. For instance, by switching on the wearing hat

121



attribute, one can edit the face image to have a hat on the head.

In order to demonstrate the scalablility of our model to large and complex

datasets, we also present results on the COCO dataset. Following Gan et al. (2017e),

we first select a set of 1000 attributes from the caption text in the training set, which

includes the most frequent nouns, verbs, or adjectives. The images in COCO are

scaled and cropped to have 64 ˆ 64 pixels. Unlike the case of CelebA face images,

the networks need to learn how to handle multiple objects and diverse backgrounds.

Results are provided in Figure 6.7. We can generate reasonably good images based

on the predicted attributes. The input and generated images also clearly share a

same set of attributes. We also observe diversity in the samples by simply drawing

multple noise vectors and using the same predicted attributes.

Precision (P) and normalized Discounted Cumulative Gain (nDCG) are two pop-

ular evaluation metrics for multi-label classification problems. Table 6.3 provides

the quantatitive results of P@10 and nDCG@10 on CelebA and COCO, where @k

means at rank k (see Section 6.6.4 for definitions). For fair comparison, we use the

same network architecures for both Triple GAN and ∆-GAN. ∆-GAN consistently

provides better results than Triple GAN. On the COCO dataset, our semi-supervised

learning approach with 50% labeled data achieves better performance than the re-

sults of Triple GAN using the full dataset, demonstrating the effectiveness of our

approach for semi-supervised joint distribution matching. More results for the above

experiments are provided in Section 6.6.3.

6.5 Conclusion

We have presented the Triangle Generative Adversarial Network (∆-GAN), a new

GAN framework that can be used for semi-supervised joint distribution matching.

Our approach learns the bidirectional mappings between two domains with a few

paired samples. We have demonstrated that ∆-GAN may be employed for a wide

122



range of applications. One possible future direction is to combine ∆-GAN with

sequence GAN (Yu et al., 2017) or textGAN (Zhang et al., 2017b) to model the joint

distribution of image-caption pairs.

6.6 Supplementary Material

6.6.1 Detailed theoretical analysis

Proposition 3. For any fixed generator Gx and Gy, the optimal discriminator D1

and D2 of the game defined by the value function V pGx, Gy, D1, D2q is

D˚1 px,yq “
ppx,yq

ppx,yq ` pxpx,yq ` pypx,yq
, D˚2 px,yq “

pxpx,yq

pxpx,yq ` pypx,yq
.

Proof. The training criterion for the discriminator D1 and D2, given any generator

Gx and Gy, is to maximize the quantity V pGx, Gy, D1, D2q:

V pGx, Gy, D1, D2q “

ż

x

ż

y

ppx,yq logD1px,yqdxdy `

ż

x

ż

y

pxpx,yq logp1´D1px,yqqdxdy

`

ż

x

ż

y

pxpx,yq logD2px,yqdxdy `

ż

x

ż

y

pypx,yq logp1´D1px,yqqdxdy

`

ż

x

ż

y

pypx,yq logp1´D2px,yqqdxdy .

Following Goodfellow et al. (2014), for any pa, bq P R2zt0, 0u, the function y Ñ

a log y ` b logp1 ´ yq achieves its maximum in r0, 1s at a
a`b

. This concludes the

proof.

Proposition 4. The equilibrium of V pGx, Gy, D1, D2q is achieved if and only if

ppx,yq “ pxpx,yq “ pypx,yq with D˚1 px,yq “
1
3

and D˚2 px,yq “
1
2
, and the op-

timum value is ´3 log 3.

Proof. Given the optimal D˚1 px,yq and D˚2 px,yq, the minimax game can be refor-

123



mulated as:

CpGx, Gyq “ max
D1,D2

V pGx, Gy, D1, D2q (6.9)

“ Epx,yq„ppx,yq
”

log
ppx,yq

ppx,yq ` pxpx,yq ` pypx,yq

ı

(6.10)

` Epx,yq„pxpx,yq
”

log
pxpx,yq

ppx,yq ` pxpx,yq ` pypx,yq

ı

(6.11)

` Epx,yq„pypx,yq
”

log
pypx,yq

ppx,yq ` pxpx,yq ` pypx,yq

ı

. (6.12)

Note that

CpG1, G2q “ ´3 log 3`KL
´

ppx,yq
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ppx,yq ` pxpx,yq ` pypx,yq

3

¯

(6.13)

`KL
´

pxpx,yq
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ppx,yq ` pxpx,yq ` pypx,yq

3

¯

(6.14)

`KL
´

pypx,yq
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ppx,yq ` pxpx,yq ` pypx,yq

3

¯

. (6.15)

Therefore,

CpG1, G2q “ ´3 log 3` 3 ¨ JSD
´

ppx,yq, pxpx,yq, pypx,yq
¯

ě ´3 log 3 , (6.16)

where JSDπ1,...,πnpp1, p2, . . . , pnq “ H
´

řn
i“1 πipi

¯

´
řn
i“1 πiHppiq is the Jensen-Shannon

divergence. π1, . . . , πn are weights that are selected for the probability distribution

p1, p2, . . . , pn, and Hppq is the entropy for distribution p. In the three-distribution

case described above, we set n “ 3 and π1 “ π2 “ π3 “
1
3
.

For ppx,yq “ pxpx,yq “ pypx,yq, we have D˚1 px,yq “
1
3
, D˚2 px,yq “

1
2

and

CpGx, Gyq “ ´3 log 3. Since the Jensen-Shannon divergence is always non-negative,

and zero iff they are equal, we have shown that C˚ “ ´3 log 3 is the global minimum

of CpGx, Gyq and that the only solution is ppx,yq “ pxpx,yq “ pypx,yq, i.e., the

generative models perfectly replicating the data distribution.

124



Algorithm 3 ∆-GAN training procedure.

θg,θd Ð initialize network parameters
repeat
px
p1q
p ,y

p1q
p q, . . . , px

pMq
p ,y

pMq
p q „ ppx,yq Ź Get M paired data samples

x
p1q
u , . . . ,x

pMq
u „ ppxq Ź Get M unpaired data samples

y
p1q
u , . . . ,y

pMq
u „ ppyq

x̃
piq
u „ pxpx|y “ y

piq
u q, i “ 1, . . . ,M Ź Sample from the conditionals

ỹ
pjq
u „ pypy|x “ x

pjq
u q, j “ 1, . . . ,M

ρ
piq
11 Ð D1px

piq
p ,y

piq
p q, i “ 1, . . . ,M Ź Compute discriminator predictions

ρ
piq
12 Ð D1px̃

piq
u ,y

piq
u q, ρ

piq
13 Ð D1px

piq
u , ỹ

piq
u q, i “ 1, . . . ,M

ρ
piq
21 Ð D2px̃

piq
u ,y

piq
u q, ρ

piq
22 Ð D2px

piq
u , ỹ

piq
u q, i “ 1, . . . ,M

Ld1 Ð ´ 1
M

řM
i“1 log ρ

piq
11 ´

1
M

řM
j“1 logp1´ ρ

pjq
12 q ´

1
M

řM
k“1 logp1´ ρ

pkq
13 q

Ld2 Ð ´ 1
M

řM
i“1 log ρ

piq
21 ´

1
M

řM
j“1 logp1´ ρ

pjq
22 q Ź Compute discriminator loss

Lg1 Ð ´ 1
M

řM
i“1 log ρ

piq
12 ´

1
M

řM
j“1 logp1´ ρ

pjq
21 q Ź Compute generator loss

Lg2 Ð ´ 1
M

řM
i“1 log ρ

piq
13 ´

1
M

řM
j“1 log ρ

pjq
22

θd Ð θd ´∇θdpLd1 ` Ld2q Ź Gradient update on discriminator networks
θg Ð θg ´∇θgpLg1 ` Lg2q Ź Gradient update on generator networks

until convergence

Attractive, 
Smiling, High 
Cheekbones, 
No Beard, 
Oval Face, 
Young

Smiling, 
Mouth Slightly 
Open, Rosy 
Cheeks, 
Wearing 
Lipstick

Black Hair, No 
Beard, Young, 
Wearing 
Lipstick

Bags Under 
Eyes, No 
Beard, Pointy 
Nose, Smiling, 
Wearing 
Lipstick

Blond Hair, 
Mouth Slightly 
Open, Narrow 
Eyes, No 
Beard, Straight 
Hair, Young

Attractive, 
Black Hair, 
Male, No 
Beard, Pointy 
Nose, Straight 
Hair

Attractive, 
Blond Hair, No 
Beard, Pointy 
Nose, Smiling, 
Straight Hair

Brown Hair, 
Bushy 
Eyebrows, 
High 
Cheekbones, 
Young

Input 
images

Predicted 
attributes

Generated 
images

Figure 6.8: Additional results on the face-to-attribute-to-face experiment.

6.6.2 ∆-GAN training procedure

6.6.3 Additional experimental results

6.6.4 Evaluation metrics for multi-label classification

Precision@k Precision at k is a popular evaluation metric for multi-label classifica-

tion problems. Given the ground truth label vector y P t0, 1uL and the prediction

125



1st row + pale skin = 2nd row

1st row + mouth slightly open = 2nd row

1st row + eyeglasses = 2nd row

1st row + wearing hat = 2nd row

Figure 6.9: Additional results on the image editing experiment.

Input  Predicted attributes Generated images Input Predicted attributes Generated images 

 

Building, standing, tall, 
castle, city, top, object, 
outdoor, tower!

   

airport, airplane, cloudy, 
large, tarmac, parked, 
jet, commercial, white, 
gear, plane, field, flying, 
landing, aircraft, 
runway, air, transport   

 

furniture, sitting, small, 
room, living, white, 
hotel, indoor, table, 
photo, rug, decorated, 
window, cabinet!    

mammal, standing, 
animal, field, walking, 
outdoor, grass 

 

 

kite, people, young, 
blue, boy, standing, 
playing, colorful, child, 
air, outdoor, holding, 
girl, flying!    

large, red, street, 
parking, standing, next, 
decker, tall, train, 
parked, city, outdoor, 
transport, tour, road  

!
Figure 6.10: Additional results on the image-to-attribute-to-image experiment.

Figure 6.11: Attribute-conditional image generation on the COCO dataset. Input
attributes are omited for brevity.

126



ŷ P r0, 1sL, P@k is defined as

P@k :“
1

k

ÿ

lPrankkpŷq

yplq . (6.17)

Precision at k performs evaluation that counts the fraction of correct predictions in

the top k scoring labels.

nDCG@k normalized Discounted Cumulative Gain (nDCG) at rank k is a family

of ranking measures widely used in multi-label learning. DCG is the total gain

accumulated at a particular rank p, which is defined as

DCG@k :“
ÿ

lPrankkpŷq

yplq

logpl ` 1q
. (6.18)

Then normalizing DCG by the value at rank k of the ideal ranking gives

N@k :“
DCG@k

řminpk,}y}0q
l“1

1
logpl`1q

. (6.19)

6.6.5 Detailed network architectures

For the CIFAR10 dataset, we use the same network architecture as used in Triple

GAN (Li et al., 2017b). For the edges2shoes dataset, we use the same network

architecture as used in the pix2pix paper (Isola et al., 2017). For other datasets, we

provide the detailed network architectures below.

Table 6.4: Architecture of the models for ∆-GAN on MNIST. BN denotes batch
normalization.

Generator A to B Generator B to A Discriminator
Input 28ˆ 28 Gray Image Input 28ˆ 28 Gray Image Input two 28ˆ 28 Gray Image

5ˆ 5 conv. 32 ReLU, stride 2, BN 5ˆ 5 conv. 32 ReLU, stride 2, BN 5ˆ 5 conv. 32 ReLU, stride 2, BN
5ˆ 5 conv. 64 ReLU, stride 2, BN 5ˆ 5 conv. 64 ReLU, stride 2, BN 5ˆ 5 conv. 64 ReLU, stride 2, BN
5ˆ 5 conv. 128 ReLU, stride 2, BN 5ˆ 5 conv. 128 ReLU, stride 2, BN 5ˆ 5 conv. 128 ReLU, stride 2, BN

Dropout: 0.1 Dropout: 0.1 Dropout: 0.1
MLP output 28ˆ 28, sigmoid MLP output 28ˆ 28, sigmoid MLP output 1, sigmoid

127



Table 6.5: Architecture of the models for ∆-GAN on CelebA. BN denotes batch
normalization. lReLU denotes Leaky ReLU.

Generator A to B Generator B to A Discriminator
Input 64ˆ 64ˆ 3 Image Input 1ˆ 40 attributes, 1ˆ 100 noise Input 64ˆ 64 Image and 1ˆ 40 attributes

4ˆ 4 conv. 32 lReLU, stride 2, BN concat input concat two inputs
4ˆ 4 conv. 64 lReLU, stride 2, BN MLP output 1024, lReLU, BN 5ˆ 5 conv. 64 ReLU, stride 2, BN
4ˆ 4 conv. 128 lReLU, stride 2, BN MP output 8192, lReLU, BN 5ˆ 5 conv. 128 ReLU, stride 2, BN
4ˆ 4 conv. 256 lReLU, stride 2, BN concat attributes
4ˆ 4 conv. 512 lReLU, stride 2, BN 5ˆ 5 deconv. 256 ReLU, stride 2, BN 5ˆ 5 conv. 256 ReLU, stride 2, B

MLP output 512, lReLU 5ˆ 5 deconv. 128 ReLU, stride 2, BN 5ˆ 5 conv. 512 ReLU, stride 2, BN
MLP output 40, sigmoid 5ˆ 5 deconv. 64 ReLU, stride 2, BN

5ˆ 5 deconv. 3 tanh, stride 2, BN MLP output 1, sigmoid

Table 6.6: Architecture of the models for ∆-GAN on COCO. BN denotes batch
normalization. lReLU denotes Leaky ReLU.

Generator A to B Generator B to A Discriminator
Input 64ˆ 64ˆ 3 Image Input 1ˆ 40 attributes, 1ˆ 100 noise Input 64ˆ 64 Image and 1ˆDim attributes

4ˆ 4 conv. 32 lReLU, stride 2, BN concat inputs concat conditional inputs
4ˆ 4 conv. 64 lReLU, stride 2, BN MLP output 16384, BN
4ˆ 4 conv. 128 lReLU, stride 2, BN ResNet Block 5ˆ 5 conv. 64 ReLU, stride 2, BN
4ˆ 4 conv. 256 lReLU, stride 2, BN 4ˆ 4 deconv. 512, stride 2
4ˆ 4 conv. 512 lReLU, stride 2, BN 3ˆ 3 conv. 512, stride 1, BN

ResNet Block 5ˆ 5 conv. 128 ReLU, stride 2, BN
ResNet Block 4ˆ 4 deconv. 256, stride 2

3ˆ 3 conv. 256, stride 1, BN 5ˆ 5 conv. 256 ReLU, stride 2, BN
4ˆ 4 deconv. 128 ReLU, stride 2

1ˆ 1 conv. 512 lReLU, stride 1, BN 3ˆ 3 conv. 128 ReLU, stride 1, BN 5ˆ 5 conv. 512 ReLU, stride 2, BN
4ˆ 4 deconv. Dim, stride 2

4ˆ 4 conv. Dim sigmoid, stride 4 3ˆ 3 conv. Dim tanh, stride 1 MLP output 1, sigmoid

128



7

Conclusion and Future Work

7.1 Summary of Contributions

Learning deep generative models is a fast-moving research field. In this thesis, I

mainly discuss the models and applications that I have worked on during my Ph.D.

study. Specifically, the contributions of this thesis are summarized as follows:

• In Chapter 2, we present a deep generative model for binary image modeling.

The proposed deep model is designed by stacking sigmoid belief networks. By

exploring the idea of data augmentation, we develop a fully Bayesian algorithm

for efficient learning of layer-wise model parameters, and inference of local

latent variables.

• In Chapter 3, we present a deep generative model for topic modeling. The pro-

posed deep model employs a deep sigmoid belief network or restricted Boltz-

mann machine, the bottom binary layer of which selects topics for use in a

Poisson factor analysis model. Scalable inference algorithms are derived by

applying Bayesian conditional density filtering and stochastic gradient ther-

mostats.

129



• In Chapter 4, we present a deep generative model for sequence modeling. The

proposed deep model is designed by constructing a hierarchy of temporal sig-

mod belief networks, defined as a sequential stack of sigmoid belief networks.

Scalable learning and inference algorithms are derived by introducing an infer-

ence network that yields fast sampling from the variational posterior. Both the

generative model and the inference network are trained together by maximizing

the variational lower bound.

• In Chapter 5, we present a deep generative model for visual captioning. The

proposed model has no latent variable, and can be considered as a new vari-

ant of LSTM that provides an efficient way to impose side information into

the network. The proposed model uses a mixture-of-experts design, and can

be considered as training an ensemble of up to 1000 LSTMs simultaneously.

Specifically, semantic concepts (i.e., tags) are detected from the image, and the

probability of each tag is used to compose the parameters in an LSTM network.

The degree to which each member of the ensemble is used to generate an image

caption is tied to the image-dependent probability of the corresponding tag.

• In Chapter 6, we present a deep generative model for joint distribution match-

ing. The proposed model is based on generative adversarial networks (GANs).

Specifically, the proposed Triangle GAN model consists of four neural networks,

two generators and two discriminators. The generators are designed to learn

the two-way conditional distributions between the two domains, while the dis-

criminators implicitly define a ternary discriminative function, which is trained

to distinguish real data pairs and two kinds of fake data pairs. The generators

and discriminators are trained together using adversarial learning.

Besides the SBN and GAN models described in this theis, during my Ph.D. study,

I have also studied variational autoencoders (VAEs) (Pu et al., 2016b, 2017b,a). I

130



have also investigated stochastic gradient MCMC methods (Chen et al., 2016a; Zhang

et al., 2017d), with applications in shape classification (Li et al., 2016b) and language

modeling (Gan et al., 2017d). Furthermore, I have also studied deep learning tech-

niques for learning better sentence and paragraph representations (Gan et al., 2017c;

Zhang et al., 2017c; Gan et al., 2017b; Zhang et al., 2018b). At the beginning of

the Ph.D. study, I have also conducted research in gene expression analysis using

discriminative factor models (Gan et al., 2015a).

7.2 Future Directions

Deep generative models, and more generally, deep learning, is an exciting field to

study in, with lots of new work coming out every week on arXiv. Below I list a few

potential research directions for future work.

• Combination of VAE and GAN: VAE and GAN are considered as two

distinct paradigms for deep generative modeling. Recently, there are many

works that attempt to make formal connections between them in a principled

way. This is an interesting and active research problem, providing us new tools

to connect variational inference and adversarial learning.

• RL for text generation: Using Reinforcement Learning (RL) for text gen-

eration, such as image captioning and machine translation, has achieved lots

of attention, since the text generation problem can be naturally casted as a

sequential decision making process, thus RL can be applied. However, all the

exisiting RL models for text generation requires careful initialization of the

model using maximum likelihood training. Research can be conducted to fur-

ther understand this problem and improve the performance via the usage of

more advanced RL tools.

131



• GAN for text generation: GAN for image synthesis has achieved tremen-

dous success. However, GAN for text generation is a very challenging problem,

due to the discrete nature of text, making it difficult to propagate the gradient

from the discriminator back to the generator. Currently, there are mainly two

ways to explore GAN for text generation. One of them is to use RL tech-

niques to backpropagate gradients, considering the output of the discriminator

as the reward for the policy network (i.e., generator) training. Another way is

to use efficient gradient approximators to approximate the non-differentiable

sampling operations. However, developing a robust GAN model for long text

generation is still an open research problem.

In terms of the applications, below I also list a few potential interesting research

directions.

• Vision-to-text generation: Image and video captioning has been investi-

gated extensively in the literature. Most existing approaches focus on gener-

ating a short one-sentence description for the whole image or video. However,

typically in a video there are several events happening, organzied in a sequen-

tial order. How to generate a coherent long paragraph to describe the whole

video is an open research problem. Further, rather than generate a chunk of

text, visual dialog is another interesting research direction, which aims to gen-

erate a dialogue to mimic the way how a conversation agent can be interacted

with humans.

• Text-to-vision synthesis: A lot of progresses have been made in generating

an image grounded on an input textual description. However, how to generate

coherent high-resolution images which potentially contain multiple objects is

still an open research problem. Further, generating a whole video based on the

text input is also a very interesting and challenging future research direction.

132



Bibliography

Acharya, A., Ghosh, J., and Zhou, M. (2015), “Nonparametric Bayesian factor anal-
ysis for dynamic count matrices,” in AISTATS.

Anne Hendricks, L., Venugopalan, S., Rohrbach, M., Mooney, R., Saenko, K., and
Darrell, T. (2016), “Deep compositional captioning: Describing novel object cate-
gories without paired training data,” in CVPR.

Arjovsky, M. and Bottou, L. (2017), “Towards principled methods for training gen-
erative adversarial networks,” in ICLR.

Arjovsky, M., Chintala, S., and Bottou, L. (2017), “Wasserstein gan,”
arXiv:1701.07875.

Armagan, A., Clyde, M., and Dunson, D. B. (2011), “Generalized beta mixtures of
Gaussians,” in NIPS.

Bahdanau, D., Cho, K., and Bengio, Y. (2015), “Neural machine translation by
jointly learning to align and translate,” in ICLR.

Ballas, N., Yao, L., Pal, C., and Courville, A. (2016), “Delving Deeper into Convo-
lutional Networks for Learning Video Representations,” in ICLR.

Banerjee, S. and Lavie, A. (2005), “METEOR: An automatic metric for MT evalu-
ation with improved correlation with human judgments,” in ACL workshop.

Barber, D. and Sollich, P. (1999), “Gaussian Fields for Approximate Inference in
Layered Sigmoid Belief Networks.” in NIPS.

Bayer, J. and Osendorfer, C. (2014), “Learning Stochastic Recurrent Networks,”
arXiv:1411.7610.

Bengio, Y., Courville, A., and Vincent, P. (2013), “Representation learning: A review
and new perspectives,” PAMI.

Blei, D. M. and Lafferty, J. D. (2007), “A CORRELATED TOPIC MODEL OF
SCIENCE,” The Annals of Applied Statistics.

133



Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003), “Latent Dirichlet allocation,”
JMLR.

Blei, D. M., Griffiths, T., Jordan, M. I., and Tenenbaum, J. B. (2004), “Hierarchical
topic models and the nested Chinese restaurant process,” in NIPS.

Boulanger-Lewandowski, N., Bengio, Y., and Vincent, P. (2012), “Modeling tempo-
ral dependencies in high-dimensional sequences: Application to polyphonic music
generation and transcription,” in ICML.

Byrne, S. and Girolami, M. (2013), “Geodesic Monte Carlo on Embedded Manifolds,”
Scandinavian J. Statist.

Carlson, D., Hsieh, Y.-P., Collins, E., Carin, L., and Cevher, V. (2016), “Stochastic
spectral descent for discrete graphical models,” IEEE Journal of Selected Topics
in Signal Processing.

Chen, C., Ding, N., and Carin, L. (2015a), “On the convergence of stochastic gradient
MCMC algorithms with high-order integrators,” in NIPS.

Chen, C., Carlson, D., Gan, Z., Li, C., and Carin, L. (2016a), “Bridging the gap
between stochastic gradient MCMC and stochastic optimization,” in AISTATS.

Chen, C., Ding, N., Li, C., Zhang, Y., and Carin, L. (2016b), “Stochastic gradient
MCMC with stale gradients,” in NIPS.

Chen, C., Li, C., Chen, L., Wang, W., Pu, Y., and Carin, L. (2017a), “Continuous-
Time Flows for Deep Generative Models,” arXiv preprint arXiv:1709.01179.

Chen, C., Wang, W., Zhang, Y., Su, Q., and Carin, L. (2017b), “A convergence anal-
ysis for a class of practical variance-reduction stochastic gradient mcmc,” arXiv
preprint arXiv:1709.01180.

Chen, D. L. and Dolan, W. B. (2011), “Collecting highly parallel data for paraphrase
evaluation,” in ACL.

Chen, J., Zhu, J., Wang, Z., Zheng, X., and Zhang, B. (2013), “Scalable Inference
for Logistic-Normal Topic Models,” in NIPS.

Chen, L., Dai, S., Pu, Y., Li, C., Su, Q., and Carin, L. (2018), “Symmetric Variational
Autoencoder and Connections to Adversarial Learning,” in AISTATS.

Chen, N., Zhu, J., Xia, F., and Zhang, B. (2014a), “Discriminative Relational Topic
Models,” PAMI.

Chen, T., Fox, E., and Guestrin, C. (2014b), “Stochastic Gradient Hamiltonian
Monte Carlo,” in ICML.

134



Chen, X. and Lawrence Zitnick, C. (2015), “Mind’s eye: A recurrent visual repre-
sentation for image caption generation,” in CVPR.

Chen, X., Fang, H., Lin, T.-Y., Vedantam, R., Gupta, S., Dollár, P., and Zitnick,
C. L. (2015b), “Microsoft COCO captions: Data collection and evaluation server,”
arXiv:1504.00325.

Cho, K., Raiko, T., and Ilin, A. (2013), “Enhanced gradient for training restricted
Boltzmann machines,” Neural computation.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., and Bengio, Y. (2014), “Learning phrase representations using RNN encoder-
decoder for statistical machine translation,” in EMNLP.

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014), “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” in arXiv:1412.3555.

Chung, J., Kastner, K., Dinh, L., Goel, K., Courville, A., and Bengio, Y. (2015), “A
Recurrent Latent Variable Model for Sequential Data,” in NIPS.

Cong, Y., Chen, B., Liu, H., and Zhou, M. (2017), “Deep Latent Dirichlet Alloca-
tion with Topic-Layer-Adaptive Stochastic Gradient Riemannian MCMC,” arXiv
preprint arXiv:1706.01724.

Dauphin, Y. N., Fan, A., Auli, M., and Grangier, D. (2016), “Language modeling
with gated convolutional networks,” arXiv preprint arXiv:1612.08083.

Dayan, P., Hinton, G. E., Neal, R. M., and Zemel, R. S. (1995), “The Helmholtz
machine,” Neural computation.

Denton, E., Chintala, S., Szlam, A., and Fergus, R. (2015), “Deep Generative Image
Models using a Laplacian Pyramid of Adversarial Networks,” in NIPS.

Devlin, J., Cheng, H., Fang, H., Gupta, S., Deng, L., He, X., Zweig, G., and Mitchell,
M. (2015), “Language models for image captioning: The quirks and what works,”
in ACL.

Ding, N., Fang, Y., Babbush, R., Chen, C., Skeel, R. D., and Neven, H. (2014),
“Bayesian Sampling Using Stochastic Gradient Thermostats,” in NIPS.

Donahue, J., Anne Hendricks, L., Guadarrama, S., Rohrbach, M., Venugopalan, S.,
Saenko, K., and Darrell, T. (2015), “Long-term recurrent convolutional networks
for visual recognition and description,” in CVPR.

Donahue, J., Krähenbühl, P., and Darrell, T. (2017), “Adversarial feature learning,”
in ICLR.

135



Dong, J., Li, X., Lan, W., Huo, Y., and Snoek, C. G. (2016), “Early Embedding and
Late Reranking for Video Captioning,” in ACMMM.

Dumoulin, V., Belghazi, I., Poole, B., Lamb, A., Arjovsky, M., Mastropietro, O.,
and Courville, A. (2017), “Adversarially learned inference,” in ICLR.

Elman, J. L. (1990), “Finding structure in time,” Cognitive science.

Fabius, O., van Amersfoort, J. R., and Kingma, D. P. (2014), “Variational Recurrent
Auto-Encoders,” arXiv:1412.6581.

Fan, K., Wang, Z., Beck, J., Kwok, J., and Heller, K. (2015), “Fast Second-Order
Stochastic Backpropagation for Variational Inference,” in NIPS.

Fan, K., Zhang, Y., Henao, R., and Heller, K. (2016a), “Triply Stochastic Variational
Inference for Non-linear Beta Process Factor Analysis,” in ICDM.

Fan, K., Li, C., and Heller, K. (2016b), “A Unifying Variational Inference Framework
for Hierarchical Graph-Coupled HMM with an Application to Influenza Infection,”
in AAAI.

Fang, H., Gupta, S., Iandola, F., Srivastava, R. K., Deng, L., Dollár, P., Gao, J., He,
X., Mitchell, M., Platt, J. C., et al. (2015), “From captions to visual concepts and
back,” in CVPR.

Frey, B. J. (1998), Graphical models for machine learning and digital communication,
MIT press.

Frey, B. J. and Hinton, G. E. (1999), “Variational learning in nonlinear Gaussian
belief networks,” Neural Computation.

Gan, C., Yang, T., and Gong, B. (2016a), “Learning attributes equals multi-source
domain generalization,” in CVPR.

Gan, C., Gan, Z., He, X., Gao, J., and Deng, L. (2017a), “StyleNet: Generating
Attractive Visual Captions with Styles,” in CVPR.

Gan, Z., Yuan, X., Henao, R., Tsalik, E. L., and Carin, L. (2015a), “13 Inference of
gene networks associated with the host response to infectious disease,” Big Data
over Networks, p. 365.

Gan, Z., Li, C., Henao, R., Carlson, D. E., and Carin, L. (2015b), “Deep temporal
sigmoid belief networks for sequence modeling,” in NIPS.

Gan, Z., Henao, R., Carlson, D., and Carin, L. (2015c), “Learning Deep Sigmoid
Belief Networks with Data Augmentation,” in AISTATS.

136



Gan, Z., Chen, C., Henao, R., Carlson, D., and Carin, L. (2015d), “Scalable deep
Poisson factor analysis for topic modeling,” in ICML.

Gan, Z., Gan, C., He, X., Pu, Y., Tran, K., Gao, J., Carin, L., and Deng, L.
(2016b), “Semantic compositional networks for visual captioning,” arXiv preprint
arXiv:1611.08002.

Gan, Z., Singh, P., Joshi, A., He, X., Chen, J., Gao, J., and Deng, L. (2017b),
“Character-level deep conflation for business data analytics,” in ICASSP.

Gan, Z., Pu, Y., Henao, R., Li, C., He, X., and Carin, L. (2017c), “Learning generic
sentence representations using convolutional neural networks,” in EMNLP.

Gan, Z., Li, C., Chen, C., Pu, Y., Su, Q., and Carin, L. (2017d), “Scalable bayesian
learning of recurrent neural networks for language modeling,” in ACL.

Gan, Z., Gan, C., He, X., Pu, Y., Tran, K., Gao, J., Carin, L., and Deng, L. (2017e),
“Semantic Compositional Networks for Visual Captioning,” in CVPR.

Gan, Z., Chen, L., Wang, W., Pu, Y., Zhang, Y., Liu, H., Li, C., and Carin, L.
(2017f), “Triangle generative adversarial networks,” in NIPS.

Ghahramani, Z. and Hinton, G. E. (1997), “The EM algorithm for mixtures of factor
analyzers,” Technical report, University of Toronto.

Girolami, M. and Calderhead, B. (2011), “Riemann manifold Langevin and Hamil-
tonian Monte Carlo methods,” J. R. Statist. Soc. B.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., and Bengio, Y. (2014), “Generative adversarial nets,” in NIPS.

Graves, A. (2013), “Generating sequences with recurrent neural networks,”
arXiv:1308.0850.

Gregor, K., Mnih, A., and Wierstra, D. (2014), “Deep AutoRegressive Networks,”
in ICML.

Guhaniyogi, R., Qamar, S., and Dunson, D. B. (2014), “Bayesian Conditional Den-
sity Filtering,” arXiv:1401.3632.

Han, S., Du, L., Salazar, E., and Carin, L. (2014), “Dynamic Rank Factor Model for
Text Streams,” in NIPS.

He, K., Zhang, X., Ren, S., and Sun, J. (2016), “Deep residual learning for image
recognition,” in CVPR.

Henao, R., Gan, Z., Lu, J., and Carin, L. (2015), “Deep Poisson factor modeling,”
in NIPS.

137



Henao, R., Lu, J. T., Lucas, J. E., Ferranti, J., and Carin, L. (2016), “Electronic
health record analysis via deep poisson factor models,” JMLR.

Henderson, J. and Titov, I. (2010), “Incremental sigmoid belief networks for grammar
learning,” JMLR.

Hermans, M. and Schrauwen, B. (2013), “Training and analysing deep recurrent
neural networks,” in NIPS.

Hinton, G., Dayan, P., To, A., and Neal, R. (1995a), “The Helmholtz machine
through time,” in Proc. of the ICANN.

Hinton, G., Osindero, S., and Teh, Y.-W. (2006), “A fast learning algorithm for deep
belief nets,” Neural computation.

Hinton, G. E. (2002), “Training products of experts by minimizing contrastive di-
vergence,” Neural computation.

Hinton, G. E. and Salakhutdinov, R. (2011), “Discovering binary codes for documents
by learning deep generative models,” Topics in Cognitive Science.

Hinton, G. E., Dayan, P., Frey, B. J., and Neal, R. M. (1995b), “The “wake-sleep”
algorithm for unsupervised neural networks,” Science.

Ho, Q., Cipar, J., Cui, H., Kim, J. K., Lee, S., Gibbons, P. B., Gibbons, G. A.,
Ganger, G. R., and Xing, E. P. (2013), “More Effective Distributed ML via a
Stale Synchronous Parallel Parameter Server,” in NIPS.

Hochreiter, S. and Schmidhuber, J. (1997), “Long short-term memory,” in Neural
computation.

Hoffman, M. D., Blei, D. M., and Bach, F. (2010), “Online learning for latent Dirich-
let allocation,” in NIPS.

Hoffman, M. D., Blei, D. M., Wang, C., and Paisley, J. (2013a), “Stochastic varia-
tional inference,” JMLR.

Hoffman, M. D., Blei, D. M., Wang, C., and Paisley, J. (2013b), “Stochastic Varia-
tional Inference,” JMLR.

Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. (2017), “Image-to-image translation
with conditional adversarial networks,” in CVPR.

Jia, X., Gavves, E., Fernando, B., and Tuytelaars, T. (2015), “Guiding long-short
term memory for image caption generation,” in ICCV.

138



Jin, J., Fu, K., Cui, R., Sha, F., and Zhang, C. (2015), “Aligning where to see and
what to tell: image caption with region-based attention and scene factorization,”
arXiv:1506.06272.

Kalman, R. (1963), “Mathematical description of linear dynamical systems,” J. the
Society for Industrial & Applied Mathematics, Series A: Control.

Karpathy, A. and Fei-Fei, L. (2015), “Deep visual-semantic alignments for generating
image descriptions,” in CVPR.

Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., and Fei-Fei, L.
(2014), “Large-scale video classification with convolutional neural networks,” in
CVPR.

Kim, T., Cha, M., Kim, H., Lee, J., and Kim, J. (2017), “Learning to Discover
Cross-Domain Relations with Generative Adversarial Networks,” in ICML.

Kingma, D. and Ba, J. (2015), “Adam: A method for stochastic optimization,” in
ICLR.

Kingma, D. P. and Welling, M. (2013), “Auto-encoding variational Bayes,”
arXiv:1312.6114.

Kingma, D. P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., and Welling,
M. (2016), “Improved variational inference with inverse autoregressive flow,” in
NIPS.

Kiros, R., Salakhutdinov, R., and Zemel, R. S. (2014a), “Multimodal Neural Lan-
guage Models.” in ICML.

Kiros, R., Zemel, R., and Salakhutdinov, R. R. (2014b), “A multiplicative model for
learning distributed text-based attribute representations,” in NIPS.

Kiros, R., Salakhutdinov, R., and Zemel, R. S. (2014c), “Unifying visual-semantic
embeddings with multimodal neural language models,” arXiv:1411.2539.

Krizhevsky, A. (2009), “Learning multiple layers of features from tiny images,” Cite-
seer.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012), “Imagenet classification with
deep convolutional neural networks,” in NIPS.

Larochelle, H. and Lauly, S. (2012), “A neural autoregressive topic model,” in NIPS.

Larochelle, H. and Murray, I. (2011), “The neural autoregressive distribution esti-
mator,” JMLR.

139



LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998), “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE.

Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Aitken,
A., Tejani, A., Totz, J., Wang, Z., et al. (2017), “Photo-realistic single image
super-resolution using a generative adversarial network,” in CVPR.

Lee, H., Ekanadham, C., and Ng, A. Y. (2008), “Sparse deep belief net model for
visual area V2,” in NIPS.

Li, C., Chen, C., Fan, K., and Carin, L. (2016a), “High-Order Stochastic Gradient
Thermostats for Bayesian Learning of Deep Models.” in AAAI.

Li, C., Stevens, A., Chen, C., Pu, Y., Gan, Z., and Carin, L. (2016b), “Learn-
ing weight uncertainty with stochastic gradient mcmc for shape classification,” in
CVPR.

Li, C., Chen, C., Carlson, D., and Carin, L. (2016c), “Preconditioned Stochastic
Gradient Langevin Dynamics for Deep Neural Networks,” in AAAI.

Li, C., Liu, H., Chen, C., Pu, Y., Chen, L., Henao, R., and Carin, L. (2017a), “AL-
ICE: Towards Understanding Adversarial Learning for Joint Distribution Match-
ing,” in NIPS.

Li, C., Xu, K., Zhu, J., and Zhang, B. (2017b), “Triple Generative Adversarial Nets,”
in NIPS.

Li, C., Li, J., Wang, G., and Carin, L. (2018a), “Learning to Sample with Adversar-
ially Learned Likelihood-Ratio,” in ICLR workshop.

Li, C., Farkhoor, H., Liu, R., and Yosinski, J. (2018b), “Measuring the Intrinsic
Dimension of Objective Landscapes,” in ICLR.

Li, M., Andersen, D., Smola, A., and Yu, K. (2014), “Communication Efficient
Distributed Machine Learning with the Parameter Server,” in NIPS.

Lin, C.-Y. (2004), “Rouge: A package for automatic evaluation of summaries,” in
ACL workshop.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár,
P., and Zitnick, C. L. (2014), “Microsoft coco: Common objects in context,” in
ECCV.

Liu, C., Mao, J., Sha, F., and Yuille, A. (2016), “Attention Correctness in Neural
Image Captioning,” arXiv:1605.09553.

Liu, M.-Y. and Tuzel, O. (2016), “Coupled generative adversarial networks,” in NIPS.

140



Liu, M.-Y., Breuel, T., and Kautz, J. (2017), “Unsupervised Image-to-Image Trans-
lation Networks,” in NIPS.

Liu, Q. and Wang, D. (2016), “Stein variational gradient descent: A general purpose
bayesian inference algorithm,” in NIPS.

Liu, Z., Luo, P., Wang, X., and Tang, X. (2015), “Deep learning face attributes in
the wild,” in ICCV.

Maaloe, L., Arngren, M., and Winther, O. (2015), “Deep Belief Nets for Topic Mod-
eling,” arXiv:1501.04325.

Mao, J., Xu, W., Yang, Y., Wang, J., Huang, Z., and Yuille, A. (2015), “Deep
captioning with multimodal recurrent neural networks (m-rnn),” in ICLR.

Marlin, B. M., Swersky, K., Chen, B., and Freitas, N. D. (2010), “Inductive principles
for restricted Boltzmann machine learning,” in AISTATS.

Martens, J. and Sutskever, I. (2011), “Learning recurrent neural networks with
hessian-free optimization,” in ICML.

Memisevic, R. and Hinton, G. (2007), “Unsupervised learning of image transforma-
tions,” in CVPR.

Metz, L., Poole, B., Pfau, D., and Sohl-Dickstein, J. (2017), “Unrolled Generative
Adversarial Networks,” in ICLR.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013), “Dis-
tributed representations of words and phrases and their compositionality,” in
NIPS.

Mimno, D., Hoffman, M. D., and Blei, D. M. (2012), “Sparse stochastic inference for
latent Dirichlet allocation,” in ICML.

Mirza, M. and Osindero, S. (2014), “Conditional generative adversarial nets,”
arXiv:1411.1784.

Mittelman, R., Kuipers, B., Savarese, S., and Lee, H. (2014), “Structured Recurrent
Temporal Restricted Boltzmann Machines,” in ICML.

Mnih, A. and Gregor, K. (2014), “Neural variational inference and learning in belief
networks,” in ICML.

Murray, I. and Salakhutdinov, R. (2009), “Evaluating probabilities under high-
dimensional latent variable models,” in NIPS.

Neal, R. M. (1992), “Connectionist learning of belief networks,” Artificial intelli-
gence.

141



Oord, A. v. d., Kalchbrenner, N., Vinyals, O., Espeholt, L., Graves, A., and
Kavukcuoglu, K. (2016a), “Conditional Image Generation with PixelCNN De-
coders,” arXiv preprint arXiv:1606.05328.

Oord, A. v. d., Kalchbrenner, N., and Kavukcuoglu, K. (2016b), “Pixel recurrent
neural networks,” arXiv preprint arXiv:1601.06759.

Oord, A. v. d., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalch-
brenner, N., Senior, A., and Kavukcuoglu, K. (2016c), “Wavenet: A generative
model for raw audio,” arXiv preprint arXiv:1609.03499.

Paisley, J., Wang, C., Blei, D. M., and Jordan, M. I. (2015), “Nested hierarchical
Dirichlet processes,” PAMI.

Pan, Y., Mei, T., Yao, T., Li, H., and Rui, Y. (2016), “Jointly Modeling Embedding
and Translation to Bridge Video and Language,” in CVPR.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002), “BLEU: a method for
automatic evaluation of machine translation,” in ACL.

Pascanu, R., Mikolov, T., and Bengio, Y. (2013), “On the difficulty of training
recurrent neural networks,” in ICML.

Patterson, S. and Teh, Y. W. (2013), “Stochastic Gradient Riemannian Langevin
Dynamics on the Probability Simplex,” in NIPS.

Perarnau, G., van de Weijer, J., Raducanu, B., and Álvarez, J. M. (2016), “Invertible
Conditional GANs for image editing,” arXiv:1611.06355.

Polson, N. G. and Scott, J. G. (2012), “Local shrinkage rules, Lévy processes and
regularized regression,” JRSS.

Polson, N. G., Scott, S. L., et al. (2011), “Data augmentation for support vector
machines,” Bayesian Analysis.

Polson, N. G., Scott, J. G., and Windle, J. (2013a), “Bayesian Inference for Logistic
Models Using Pólya–Gamma Latent Variables,” JASA.

Polson, N. G., Scott, J. G., and Windle, J. (2013b), “Bayesian inference for logistic
models using Pólya-Gamma latent variables,” JASA.

Pu, Y., Yuan, X., and Carin, L. (2015), “Generative Deep Deconvolutional Learn-
ing,” in ICLR workshop.

Pu, Y., Yuan, X., Stevens, A., Li, C., and Carin, L. (2016a), “A Deep Generative
Deconvolutional Image Model,” in AISTATS.

142



Pu, Y., Gan, Z., Henao, R., Yuan, X., Li, C., Stevens, A., and Carin, L. (2016b),
“Variational autoencoder for deep learning of images, labels and captions,” in
NIPS.

Pu, Y., Wang, W., Henao, R., Chen, L., Gan, Z., Li, C., and Carin, L. (2017a),
“Adversarial Symmetric Variational Autoencoder,” in NIPS.

Pu, Y., Gan, Z., Henao, R., Li, C., Han, S., and Carin, L. (2017b), “VAE Learning
via Stein Variational Gradient Descent,” in NIPS.

Pu, Y., Min, M. R., Gan, Z., and Carin, L. (2018), “Adaptive feature abstraction
for translating video to text,” in AAAI.

Rabiner, L. and Juang, B. (1986), “An introduction to hidden Markov models,”
ASSP Magazine, IEEE.

Radford, A., Metz, L., and Chintala, S. (2016), “Unsupervised representation learn-
ing with deep convolutional generative adversarial networks,” in ICLR.

Ranganath, R., Tang, L., Charlin, L., and Blei, D. M. (2015), “Deep Exponential
Families,” in AISTATS.

Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., and Lee, H. (2016), “Gen-
erative adversarial text to image synthesis,” in ICML.

Rezende, D. J. and Mohamed, S. (2015), “Variational inference with normalizing
flows,” arXiv preprint arXiv:1505.05770.

Rezende, D. J., Mohamed, S., and Wierstra, D. (2014), “Stochastic backpropagation
and approximate inference in deep generative models,” in ICML.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., et al. (2015), “Imagenet large scale visual
recognition challenge,” IJCV.

Salakhutdinov, R. (2015), “Learning deep generative models,” Annual Review of
Statistics and Its Application.

Salakhutdinov, R. and Hinton, G. E. (2009a), “Deep Boltzmann machines,” in AIS-
TATS.

Salakhutdinov, R. and Hinton, G. E. (2009b), “Replicated softmax: an undirected
topic model,” in NIPS.

Salakhutdinov, R. and Larochelle, H. (2010), “Efficient learning of deep Boltzmann
machines,” in AISTATS.

143



Salakhutdinov, R. and Murray, I. (2008), “On the quantitative analysis of deep belief
networks,” in ICML.

Salakhutdinov, R., Tenenbaum, J. B., and Torralba, A. (2013), “Learning with
hierarchical-deep models,” PAMI.

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., and Chen, X.
(2016), “Improved techniques for training gans,” in NIPS.

Saul, L. K., Jaakkola, T., and Jordan, M. I. (1996), “Mean field theory for sigmoid
belief networks,” JAIR.

Shen, D., Zhang, Y., Henao, R., Su, Q., and Carin, L. (2017), “Decon-
volutional latent-variable model for text sequence matching,” arXiv preprint
arXiv:1709.07109.

Simonyan, K. and Zisserman, A. (2015), “Very deep convolutional networks for large-
scale image recognition,” in ICLR.

Smolensky, P. (1986), “Information processing in dynamical systems: Foundations
of harmony theory,” Parallel Distributed Processing, chapter 6.

Socher, R., Karpathy, A., Le, Q. V., Manning, C. D., and Ng, A. Y. (2014),
“Grounded compositional semantics for finding and describing images with sen-
tences,” TACL.

Song, J., Gan, Z., and Carin, L. (2016a), “Factored Temporal Sigmoid Belief Net-
works for Sequence Learning,” in ICML.

Song, Z., Henao, R., Carlson, D., and Carin, L. (2016b), “Learning sigmoid belief
networks via Monte Carlo expectation maximization,” in AISTATS.

Song, Z., Muraoka, Y., Fujimaki, R., and Carin, L. (2017), “Scalable model selection
for belief networks,” in NIPS.

Springenberg, J. T. (2015), “Unsupervised and semi-supervised learning with cate-
gorical generative adversarial networks,” arXiv:1511.06390.

Srivastava, N., Salakhutdinov, R., and Hinton, G. E. (2013), “Modeling documents
with deep Boltzmann machines,” in UAI.

Stevens, A., Pu, Y., Sun, Y., Spell, G., and Carin, L. (2017), “Tensor-Dictionary
Learning with Deep Kruskal-Factor Analysis,” in AISTATS.

Su, Q., Liao, X., Li, C., Gan, Z., and Carin, L. (2017), “Unsupervised Learning with
Truncated Gaussian Graphical Models.” in AAAI.

144



Sutskever, I. and Hinton, G. (2007), “Learning multilevel distributed representations
for high-dimensional sequences,” in AISTATS.

Sutskever, I., Hinton, G., and Taylor, G. (2009), “The recurrent temporal restricted
boltzmann machine,” in NIPS.

Sutskever, I., Martens, J., and Hinton, G. E. (2011), “Generating text with recurrent
neural networks,” in ICML.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014), “Sequence to sequence learning with
neural networks,” in NIPS.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., and Rabinovich, A. (2015), “Going deeper with convolutions,” in
CVPR.

Taigman, Y., Polyak, A., and Wolf, L. (2017), “Unsupervised Cross-Domain Image
Generation,” in ICLR.

Taylor, G. and Hinton, G. (2009), “Factored conditional restricted Boltzmann ma-
chines for modeling motion style,” in ICML.

Taylor, G., Hinton, G., and Roweis, S. (2006), “Modeling human motion using binary
latent variables,” in NIPS.

Teh, Y. W., Jordan, M. I., Beal, M. J., and Blei, D. M. (2006), “Hierarchical Dirichlet
Processes,” JASA.

Theano Development Team (2016), “Theano: A Python framework for fast compu-
tation of mathematical expressions,” arXiv: 1605.02688.

Tieleman, T. and Hinton, G. (2012), “Lecture 6.5-rmsprop: Divide the gradient by
a running average of its recent magnitude,” in COURSERA: Neural Networks for
Machine Learning.

Tipping, M. E. and Bishop, C. M. (1999), “Probabilistic principal component anal-
ysis,” Journal of the Royal Statistical Society: Series B (Statistical Methodology).

Tran, D., Bourdev, L., Fergus, R., Torresani, L., and Paluri, M. (2015), “Learning
spatiotemporal features with 3d convolutional networks,” in ICCV.

Tran, K., He, X., Zhang, L., Sun, J., Carapcea, C., Thrasher, C., Buehler, C., and
Sienkiewicz, C. (2016), “Rich image captioning in the wild,” in CVPR Workshops.

Tuckerman, M. E. (2010), Statistical Mechanics: Theory and Molecular Simulation,
Oxford University Press.

145



Vedantam, R., Lawrence Zitnick, C., and Parikh, D. (2015), “Cider: Consensus-
based image description evaluation,” in CVPR.

Venugopalan, S., Rohrbach, M., Donahue, J., Mooney, R., Darrell, T., and Saenko,
K. (2015a), “Sequence to sequence-video to text,” in ICCV.

Venugopalan, S., Xu, H., Donahue, J., Rohrbach, M., Mooney, R., and Saenko,
K. (2015b), “Translating videos to natural language using deep recurrent neural
networks,” in NAACL.

Vinyals, O., Toshev, A., Bengio, S., and Erhan, D. (2015), “Show and tell: A neural
image caption generator,” in CVPR.

Wallach, H. M., Murray, I., Salakhutdinov, R., and Mimno, D. (2009), “Evaluation
methods for topic models,” in ICML.

Wang, C. and Blei, D. M. (2012), “Truncation-free Stochastic Variational Inference
for Bayesian Nonparametric Models,” in NIPS.

Wang, W., Gan, Z., Wang, W., Shen, D., Huang, J., Ping, W., Satheesh, S., and
Carin, L. (2017), “Topic Compositional Neural Language Model,” arXiv preprint
arXiv:1712.09783.

Wang, W., Pu, Y., Verma, V. K., Fan, K., Zhang, Y., Chen, C., Rai, P., and Carin,
L. (2018), “Zero-Shot Learning via Class-Conditioned Deep Generative Models,”
in AAAI.

Welling, M. and Teh, Y. W. (2011), “Bayesian Learning via Stochastic Gradient
Langevin Dynamics,” in ICML.

Welling, M., Rosen-Zvi, M., and Hinton, G. E. (2005), “Exponential family harmo-
niums with an application to information retrieval,” in NIPS.

Werbos, P. (1990), “Backpropagation through time: what it does and how to do it,”
in Proc. of the IEEE.

Williamson, S., Wang, C., Heller, K., and Blei, D. M. (2010), “The IBP compound
Dirichlet process and its application to focused topic modeling,” in ICML.

Wu, Q., Shen, C., Liu, L., Dick, A., and Hengel, A. v. d. (2016a), “What value do
explicit high level concepts have in vision to language problems?” in CVPR.

Wu, Y., Zhang, S., Zhang, Y., Bengio, Y., and Salakhutdinov, R. (2016b), “On
Multiplicative Integration with Recurrent Neural Networks,” in NIPS.

Xia, Y., Qin, T., Chen, W., Bian, J., Yu, N., and Liu, T.-Y. (2017), “Dual Supervised
Learning,” in ICML.

146



Xian, Y., Pu, Y., Gan, Z., Lu, L., and Thompson, A. (2016), “Modified DCTNet for
audio signals classification,” The Journal of the Acoustical Society of America.

Xian, Y., Pu, Y., Gan, Z., Lu, L., and Thompson, A. (2017), “Adaptive DCTNet for
audio signal classification,” in ICASSP.

Xu, J., Mei, T., Yao, T., and Rui, Y. (2016), “Msr-vtt: A large video description
dataset for bridging video and language,” in CVPR.

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhutdinov, R., Zemel, R. S.,
and Bengio, Y. (2015), “Show, attend and tell: Neural image caption generation
with visual attention,” in ICML.

Xu, T., Zhang, P., Huang, Q., Zhang, H., Gan, Z., Huang, X., and He, X. (2017),
“AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative
Adversarial Networks,” arXiv preprint arXiv:1711.10485.

Yang, Z., Yuan, Y., Wu, Y., Salakhutdinov, R., and Cohen, W. W. (2016), “Review
Networks for Caption Generation,” in NIPS.

Yi, Z., Zhang, H., Tan, P., and Gong, M. (2017), “DualGAN: Unsupervised Dual
Learning for Image-to-Image Translation,” in ICCV.

You, Q., Jin, H., Wang, Z., Fang, C., and Luo, J. (2016), “Image captioning with
semantic attention,” in CVPR.

Young, P., Lai, A., Hodosh, M., and Hockenmaier, J. (2014), “From image descrip-
tions to visual denotations: New similarity metrics for semantic inference over
event descriptions,” TACL.

Yu, H., Wang, J., Huang, Z., Yang, Y., and Xu, W. (2016), “Video Paragraph
Captioning using Hierarchical Recurrent Neural Networks,” in CVPR.

Yu, L., Zhang, W., Wang, J., and Yu, Y. (2017), “Seqgan: sequence generative
adversarial nets with policy gradient,” in AAAI.

Yuan, X. and Pu, Y. (2018), “Parallel lensless compressive imaging via deep convo-
lutional neural networks,” Optics Express.

Yuan, X., Pu, Y., and Carin, L. (2017), “Compressive Sensing via Convolutional
Factor Analysis,” arXiv preprint arXiv:1701.03006.

Yuille, A. (2005), “The Convergence of Contrastive Divergences,” in NIPS.

Zaremba, W., Sutskever, I., and Vinyals, O. (2014), “Recurrent neural network reg-
ularization,” arXiv:1409.2329.

147



Zhang, H., Xu, T., Li, H., Zhang, S., Huang, X., Wang, X., and Metaxas, D. (2017a),
“StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Ad-
versarial Networks,” in ICCV.

Zhang, R., Li, C., Chen, C., and Carin, L. (2018a), “Learning Structural Weight
Uncertainty for Sequential Decision-Making,” in AISTATS.

Zhang, X. and Carin, L. (2012), “Joint modeling of a matrix with associated text
via latent binary features,” in NIPS.

Zhang, X., Henao, R., Gan, Z., Li, Y., and Carin, L. (2018b), “Multi-Label Learning
from Medical Plain Text with Convolutional Residual Models,” arXiv preprint
arXiv:1801.05062.

Zhang, Y., Henao, R., Li, C., and Carin, L. (2015), “Learning Dictionary with Spatial
and Inter-dictionary Dependency,” Workshop on representation learning, NIPS.

Zhang, Y., Henao, R., Li, C., and Carin, L. (2016a), “Bayesian Dictionary Learning
with Gaussian Processes and Sigmoid Belief Networks,” in IJCAI.

Zhang, Y., Zhao, Y., David, L., Henao, R., and Carin, L. (2016b), “Dynamic Poisson
Factor Analysis,” in ICDM.

Zhang, Y., Gan, Z., and Carin, L. (2016c), “Generating text via adversarial training,”
in NIPS workshop on Adversarial Training.

Zhang, Y., Chen, C., Henao, R., and Carin, L. (2016d), “Laplacian Hamiltonian
Monte Carlo,” in ECML PKDD.

Zhang, Y., Henao, R., Carin, L., Zhong, J., and Hartemink, A. J. (2016e), “Learning
a Hybrid Architecture for Sequence Regression and Annotation.” in AAAI.

Zhang, Y., Wang, X., Chen, C., Henao, R., Fan, K., and Carin, L. (2016f), “Towards
unifying Hamiltonian Monte Carlo and slice sampling,” in NIPS.

Zhang, Y., Gan, Z., Fan, K., Chen, Z., Henao, R., Shen, D., and Carin, L. (2017b),
“Adversarial Feature Matching for Text Generation,” in ICML.

Zhang, Y., Shen, D., Wang, G., Gan, Z., Henao, R., and Carin, L. (2017c), “Decon-
volutional paragraph representation learning,” in NIPS.

Zhang, Y., Chen, C., Gan, Z., Henao, R., and Carin, L. (2017d), “Stochastic Gradient
Monomial Gamma Sampler,” in ICML.

Zhao, J., Mathieu, M., and LeCun, Y. (2017), “Energy-based generative adversarial
network,” in ICLR.

148



Zhou, M. and Carin, L. (2015), “Negative Binomial process count and mixture mod-
eling,” PAMI.

Zhou, M., Hannah, L., Dunson, D., and Carin, L. (2012a), “Beta-negative Binomial
process and Poisson factor analysis,” in AISTATS.

Zhou, M., Li, L., Dunson, D., and Carin, L. (2012b), “Lognormal and gamma mixed
negative binomial regression,” in ICML.

Zhou, M., Cong, Y., and Chen, B. (2015), “The Poisson gamma belief network,” in
NIPS.

Zhou, M., Cong, Y., and Chen, B. (2016), “Augmentable gamma belief networks,”
JMLR.

Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. (2017), “Unpaired Image-to-Image
Translation using Cycle-Consistent Adversarial Networks,” in ICCV.

149



Biography

Zhe Gan was born on December 1st, 1989, and was raised in Fuzhou, Jiangxi

Province, China. He received the B.S. degree and M.S. degree in Electrical Engi-

neering, both from Peking University, Beijing, China, in 2010 and 2013, respectively.

Beginning August 2013, he has been with the Department of Electrical and Computer

Engineering at Duke University, Durham, NC, where he is currently studying toward

the Ph.D. degree in Electrical and Computer Engineering, under the guidance of Pro-

fessor Lawrence Carin. His research interests lie in machine learning, especially deep

learning, with its applications in computer vision and natural language processing.

150


	Abstract
	List of Tables
	List of Figures
	Acknowledgements
	1 Introduction and Background
	1.1 Deep Generative Models: An Overview
	1.1.1 Restricted Boltzmann Machines
	1.1.2 Sigmoid Belief Networks
	1.1.3 Variational Autoencoders
	1.1.4 Generative Adversarial Networks
	1.1.5 Autoregressive Models

	1.2 Thesis Contribution
	1.2.1 Deep Generative Models for Binary Image Data
	1.2.2 Deep Generative Models for Documents
	1.2.3 Deep Generative Models for Sequential Data
	1.2.4 Deep Generative Models for Visual Captioning
	1.2.5 Deep Generative Models for Joint Distribution Matching


	2 Learning Sigmoid Belief Networks
	2.1 Introduction
	2.2 Model formulation
	2.2.1 Sigmoid Belief Networks
	2.2.2 Autoregressive Structure
	2.2.3 Deep Sigmoid Belief Networks
	2.2.4 Bayesian sparsity shrinkage prior

	2.3 Learning and inference
	2.3.1 Gibbs sampling
	2.3.2 Mean field variational Bayes
	2.3.3 Learning deep networks using SBNs

	2.4 Related work
	2.5 Experiments
	2.5.1 Experiment setup
	2.5.2 Binarized MNIST dataset
	2.5.3 Caltech 101 Silhouettes dataset
	2.5.4 OCR letters dataset

	2.6 Discussion
	2.7 Supplementary Material
	2.7.1 Properties of Pólya-Gamma distribution
	2.7.2 VB update equations


	3 Deep Poisson Factor Analysis for Topic Modeling
	3.1 Introduction
	3.2 Model Formulation
	3.2.1 Poisson Factor Analysis
	3.2.2 Structured Priors on the Latent Binary Matrix
	3.2.3 Deep Architecture for Topic Modeling

	3.3 Scalable Posterior Inference
	3.3.1 Bayesian conditional density filtering
	3.3.2 Stochastic gradient thermostats
	3.3.3 Discussion

	3.4 Related Work
	3.5 Experiments
	3.5.1 Datasets and Setups
	3.5.2 Quantitative Evaluation
	3.5.3 Sensitivity analysis
	3.5.4 Visualization

	3.6 Discussion
	3.7 Supplementary Material
	3.7.1 Conditional Densities used in BCDF
	3.7.2 Evaluation Details on Perplexities


	4 Temporal Sigmoid Belief Networks for Sequence Modeling
	4.1 Introduction
	4.2 Model Formulation
	4.2.1 Temporal Sigmoid Belief Networks
	4.2.2 TSBN Variants
	4.2.3 Deep Architecture for Sequence Modeling with TSBNs

	4.3 Scalable Learning and Inference
	4.3.1 Variational Lower Bound Objective
	4.3.2 Parameter Learning
	4.3.3 Extension to deep models

	4.4 Related Work
	4.5 Experiments
	4.5.1 Bouncing balls dataset
	4.5.2 Motion capture dataset
	4.5.3 Polyphonic music dataset
	4.5.4 State of the Union dataset

	4.6 Conclusion
	4.7 Supplementary Material
	4.7.1 Learning and Inference Details on TSBN


	5 Semantic Compositional Networks for Visual Captioning
	5.1 Introduction
	5.2 Related work
	5.3 Semantic compositional networks
	5.3.1 Review of RNN for image captioning
	5.3.2 Semantic concept detection
	5.3.3 SCN-RNN
	5.3.4 SCN-LSTM
	5.3.5 Extension to video captioning

	5.4 Experiments
	5.4.1 Datasets
	5.4.2 Training procedure
	5.4.3 Evaluation
	5.4.4 Quantitative results
	5.4.5 Qualitative analysis

	5.5 Conclusion
	5.6 Supplementary Material
	5.6.1 More results for Figure 5.4
	5.6.2 More results on image captioning
	5.6.3 More results on video captioning


	6 Triangle Generative Adversarial Networks
	6.1 Introduction
	6.2 Model
	6.2.1 Triangle Generative Adversarial Networks (-GANs)
	6.2.2 Theoretical analysis
	6.2.3 Semi-supervised learning
	6.2.4 Relation to Triple GAN
	6.2.5 Applications

	6.3 Related work
	6.4 Experiments
	6.4.1 Toy data experiment
	6.4.2 Semi-supervised classification
	6.4.3 Image-to-image translation
	6.4.4 Attribute-conditional image generation

	6.5 Conclusion
	6.6 Supplementary Material
	6.6.1 Detailed theoretical analysis
	6.6.2 -GAN training procedure
	6.6.3 Additional experimental results
	6.6.4 Evaluation metrics for multi-label classification
	6.6.5 Detailed network architectures


	7 Conclusion and Future Work
	7.1 Summary of Contributions
	7.2 Future Directions

	Bibliography
	Biography

