HERO: Hierarchical EncodeR for Video+Language Omnirepresentation Pre-training

Linjie Li*, Yen-Chun Chen*, Yu Cheng, Zhe Gan, Licheng Yu, Jingjing Liu

Microsoft Dynamics 365 AI Research

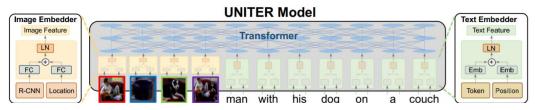
* Equal Contribution

Vision + Language Pre-training

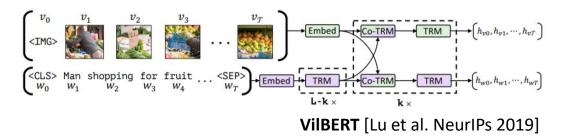
Vision: Image

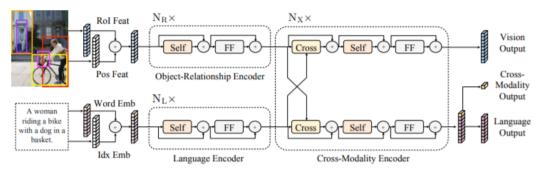
Language: Textual Descriptions

Little girl and her dog in northern Thailand. They both seemed interested in what we were doing



UNITER [Chen et al. 2019]



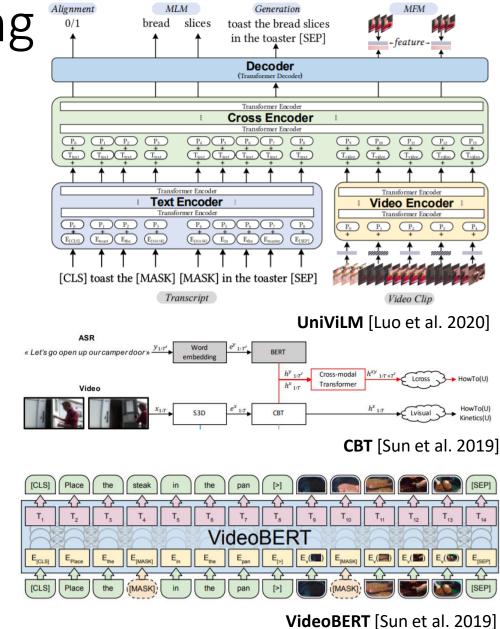


LXMERT [Tan and Bansal, EMNLP 2019]

Video + Language Pre-training

Video: Sequence of image frames Language: Subtitles/Narrations

00:00:02 --> 00:00:04 That's why you won't go out with her again? 00:00:34 --> 00:00:36 - Thank God you're here. Listen to this. - What? 00:00:66 --> 00:00:68 (Joey:) Joey doesn't share food!



Video + Language Pre-training

- Limitations of existing methods
 - Video + Text inputs are directly concatenated, losing the temporal alignment
 - Pre-training tasks directly borrowed from Image + Text pre-training
 - Pre-training datasets limited to narrated instructional videos from Howto100M [Miech et al. ICCV 2019]

• HERO (Hierarchical EncodeR for Omni-representation learning)

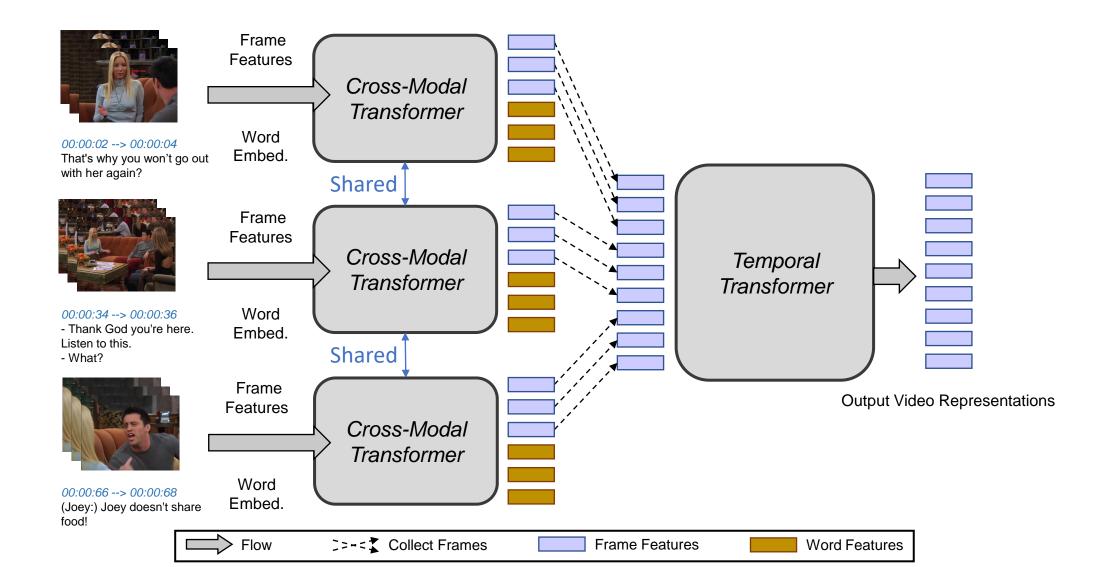
- New model architecture:
 - Local temporal alignments between frames and subtitles are captured by a *Cross-modal Transformer*
 - Global temporal context are modeled by a *Temporal Transformer*
- New Pre-training tasks: Video-Subtitle Matching and Frame Order Modeling
- Diverse Pre-training Datasets: Howto100M and TV dataset [Lei at al. ACL 2018]
 - We further collect two downstream datasets based on Howto100M

HERO: Hierarchical EncodeR for Omni-representation learning

HERO: Hierarchical EncodeR for Omni-representation learning

- Temporally align subtitle sentences with frames
- Frame features: 2D ResNet Features [He et al. CVPR 2016] and 3D SlowFast Features [Feichtenhofer et al. ICCV 2019]
- Subtitle sentences are tokenized and each word are embedded following RoBERTa [Liu et al. 2019]

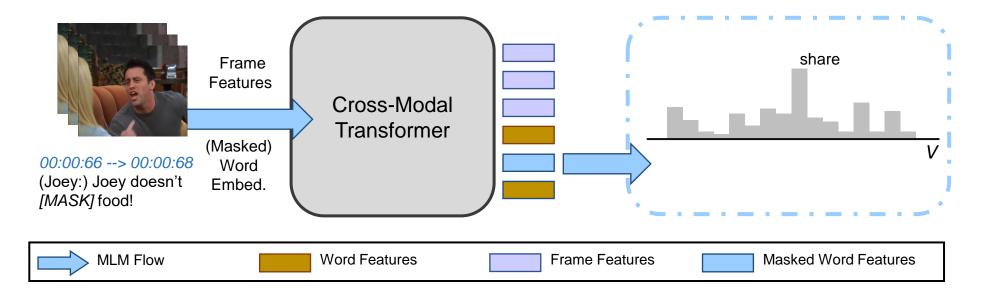
HERO: Hierarchical EncodeR for Omni-representation learning



Pre-training HERO

- Pre-training Tasks
 - Masked Language Modeling (MLM)
 - Masked Frame Modeling (MFM)
 - Video-Subtitle Matching (VSM)
 - Frame Order Modeling (FOM)

Masked Language Modeling (MLM)



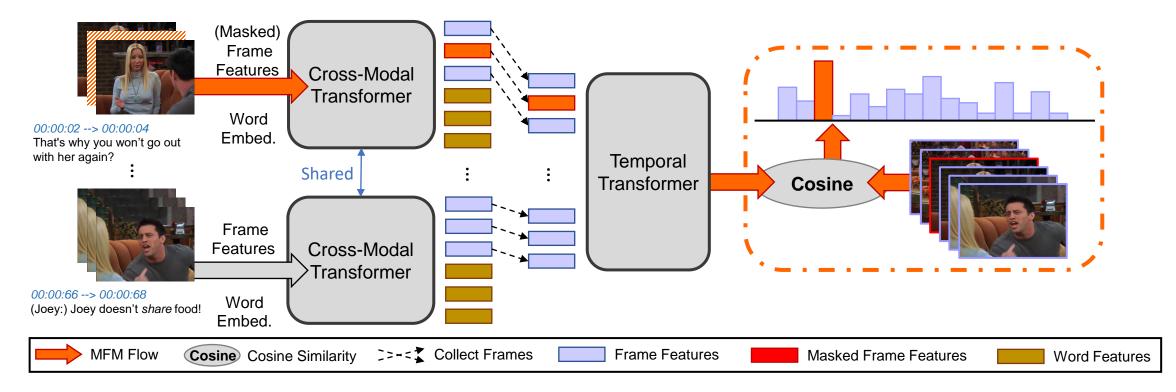
Word Tokens of Subtitle s_i : $\mathbf{w}_{s_i} = \{w_{s_i}^j\}_{j=1}^L$

Visual Frames aligned with s_i : $\mathbf{v}_{s_i} = \{v_{s_i}^j\}_{j=1}^K$

Masking Indices: $\mathbf{m} \in \mathbb{N}^M$

Loss Function of MLM: $\mathcal{L}_{MLM}(\theta) = -\mathbb{E}_D \log P_{\theta}(\mathbf{w}_{s_i}^{\mathbf{m}} | \mathbf{w}_{s_i}^{\setminus \mathbf{m}}, \mathbf{v}_{s_i})$

Masked Frame Modeling (MFM)



All subtitle sentences: $\mathbf{s} = \{s_i\}_{i=1}^{N_s}$ Visual Frames: $\mathbf{v} = \{v_i\}_{i=1}^{N_v}$ Masking Indices: $\mathbf{m} \in \mathbb{N}^M$

Loss Function of MFM: $\mathcal{L}_{MFM}(\theta) = \mathbb{E}_D f_{\theta}(\mathbf{v_m} | \mathbf{v_{\backslash m}}, \mathbf{s})$

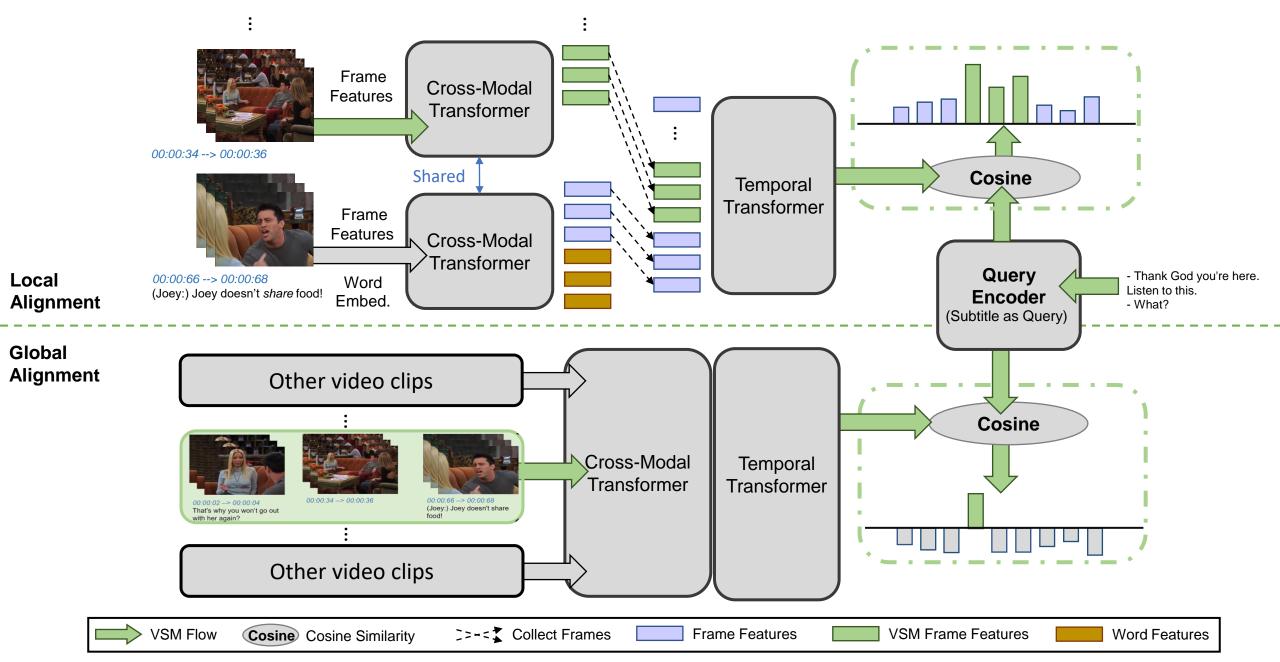
(1) Masked Frame Feature Regression (MFFR)

$$f_{\theta}(\mathbf{v_m}|\mathbf{v_{\backslash m}},\mathbf{s}) = \sum_{i=1}^M \|h_{\theta}(\mathbf{v_m}^{(i)}) - r(\mathbf{v_m}^{(i)})\|_2^2$$

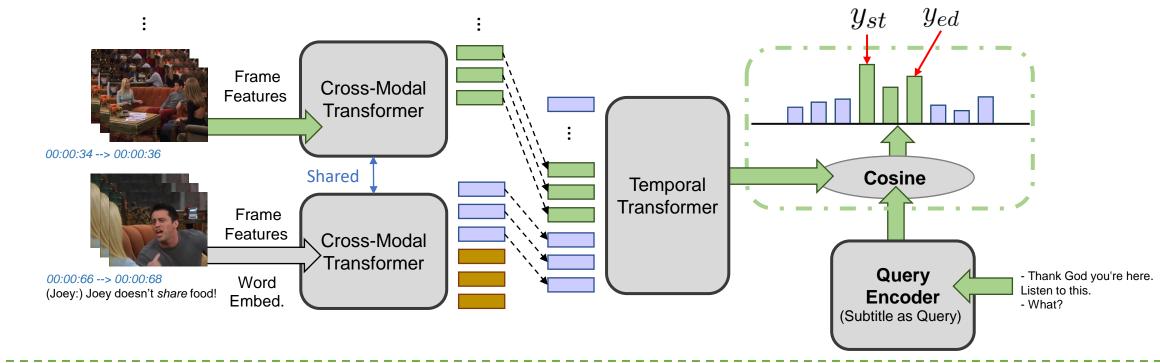
(2) Masked Frame with Noise Contrastive Estimation (M-NCE)

$$f_{\theta}(\mathbf{v_m}|\mathbf{v_{\backslash m}},\mathbf{s}) = \sum_{i=1}^{M} \log \text{NCE}(g_{\theta}(\mathbf{v_m}^{(i)})|g_{\theta}(\mathbf{v_{neg}}))$$

Video Subtitle Matching (VSM)



Video Subtitle Matching (VSM)



Start and end index of overlapping frames: y_{st} , y_{ed}

Loss function of local alignments: $\mathcal{L}_{local} = -\mathbb{E}_D \log(\mathbf{p}_{st}[y_{st}]) + \log(\mathbf{p}_{ed}[y_{ed}])$

Local

Alignment

Collect Frames

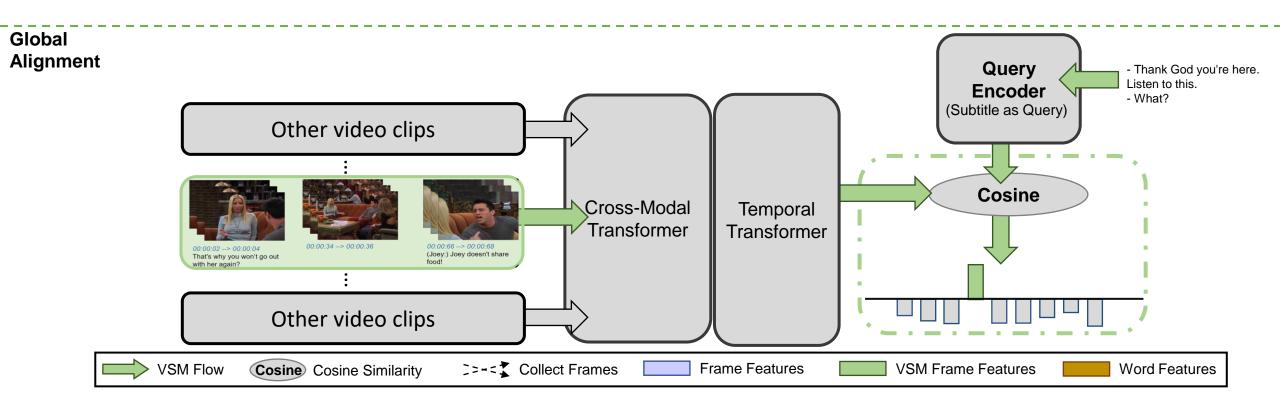
Video Subtitle Matching (VSM)

Positive and negative video-subtitle pairs: (s_q, \mathbf{v}) , $(s_q, \hat{\mathbf{v}})$, (\hat{s}_q, \mathbf{v}) Similarity measure: S

Hinge loss: $\mathcal{L}_h(S_{pos}, S_{neg}) = \max(0, \delta + S_{neg} - S_{pos})$

Loss function of global alignments:

 $\mathcal{L}_{global} = -\mathbb{E}_D[\mathcal{L}_h(S_{global}(s_q, \mathbf{v}), S_{global}(\hat{s}_q, \mathbf{v})) + \mathcal{L}_h(S_{global}(s_q, \mathbf{v}), S_{global}(s_q, \hat{\mathbf{v}}))]$



Frame Order Modeling (FOM)



Reorder Indices: $\mathbf{r} = \{r_i\}_{i=1}^R \in \mathbb{N}^R$

Original timestamp:
$$\mathbf{t} = \{t_i\}_{i=1}^R$$

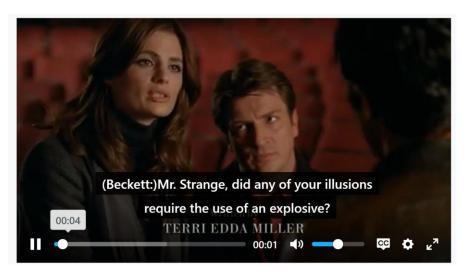
Loss Function of FOM: $\mathcal{L}_{\text{FOM}} = -\mathbb{E}_D \sum_{i=1}^R \log \mathbf{P}[r_i, t_i]$

Pre-training HERO

- Pre-training Tasks
 - Masked Language Modeling (MLM)
 - Masked Frame Modeling (MFM)
 - Video-Subtitle Matching (VSM)
 - Frame Order Modeling (FOM)
- Pre-training Datasets
 - TV Dataset
 - Howto100M Dataset

Our Pre-training Data for Video + Language

TV Dataset



- 22K video clips from 6 popular TV shows
- Each video clip is 60-90 seconds long
- Dialogue ("character name: subtitle") is provided

Howto100M Dataset

- 1.22M instructional videos from YouTube
- Exclude videos in non-English languages and cut the rest into 60-second clips
- 660K video clips with English subtitles

Video + Language Downstream Tasks

Video: Sequence of image frames Language: Subtitles/Narrations

00:00:02 --> 00:00:04 That's why you won't go out with her again? 00:00:34 --> 00:00:36 - Thank God you're here. Listen to this. - What? 00:00:66 --> 00:00:68 (Joey:) Joey doesn't share food! Video Captioning Caption: Joey's dating policy: never shares food!

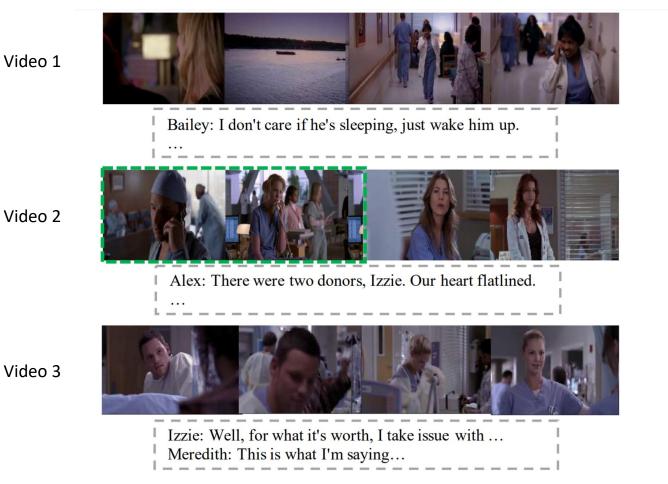
Text-based Video Moment Retrieval Query: Joey's dating policy: never shares food!

Video Question Answering

Question: Why did Joey complain about his date? Answer: She took Joey's fries

Downstream Task 1: Video Moment Retrieval

Video Corpus



Query: Alex is on the phone with Izzie and he is updating her on the heart situation.

Video Moment Retrieval = Video Retrieval + Moment Retrieval

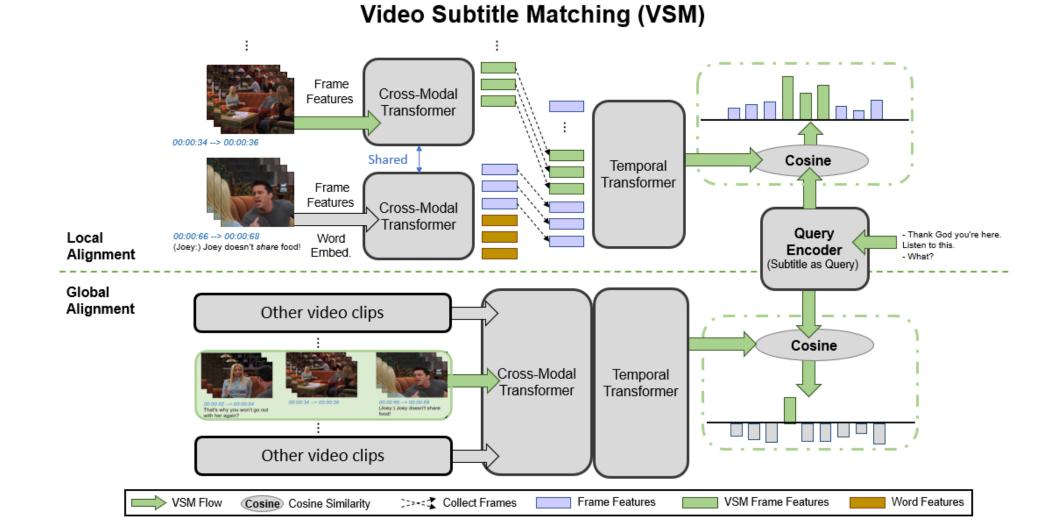
- Subtask I: Video Retrieval
 - From video corpus, retrieve the most relevant video clip described by the query

Subtask II: Moment Retrieval

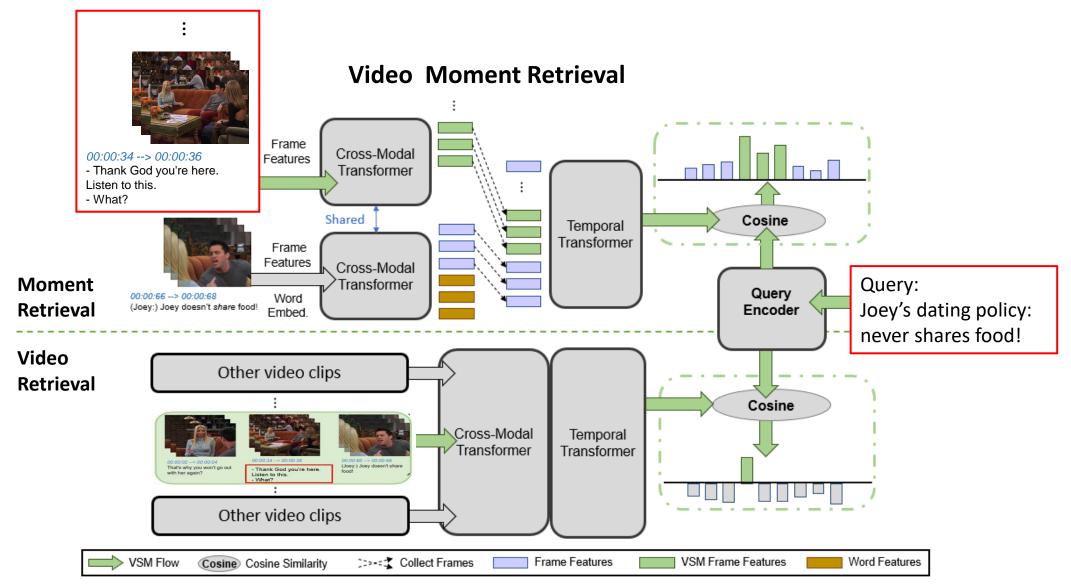
- Given the query, localize the correct moment from the most relevant video clip
- Evaluation:
 - Average recall at K (R@K) over all queries
 - Temporal Intersection over Union (tIOU) is used to measure the performance of moment retrieval

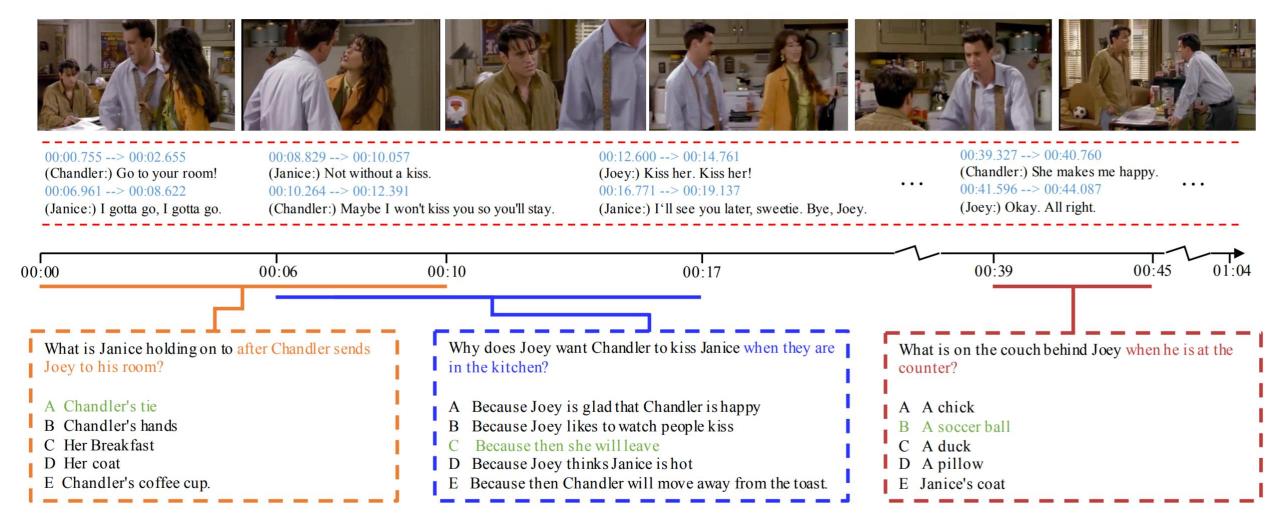
TVR [Lei et al. 2020]

Downstream Task 1: Video Moment Retrieval

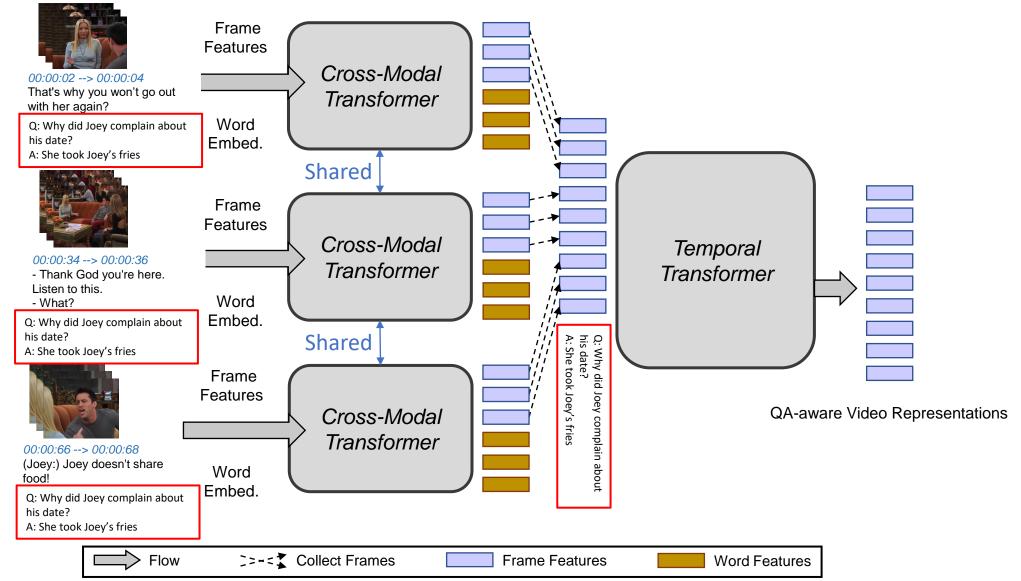


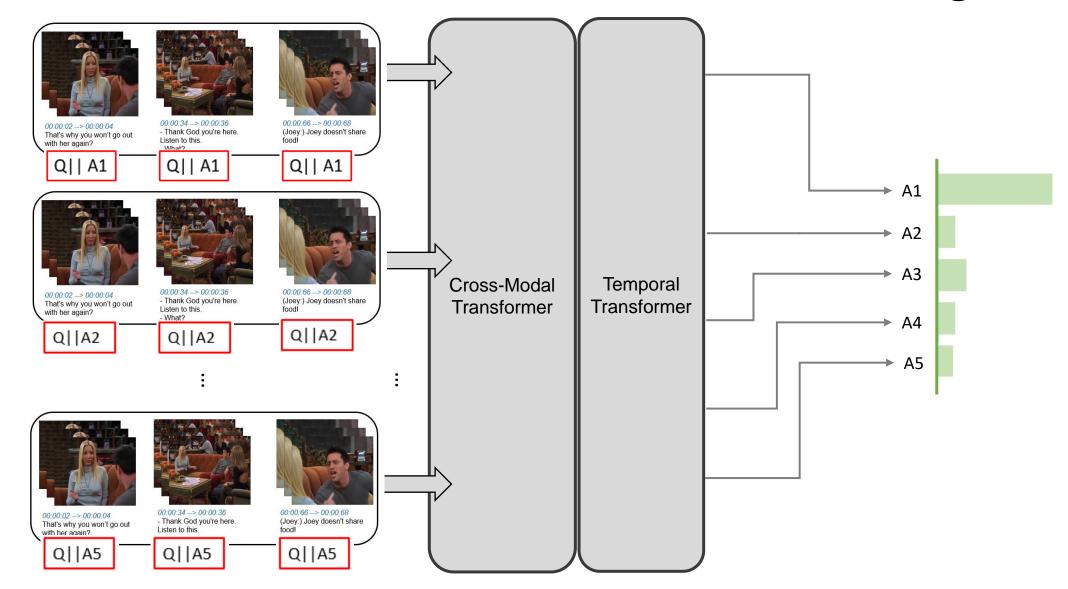
Downstream Task 1: Video Moment Retrieval

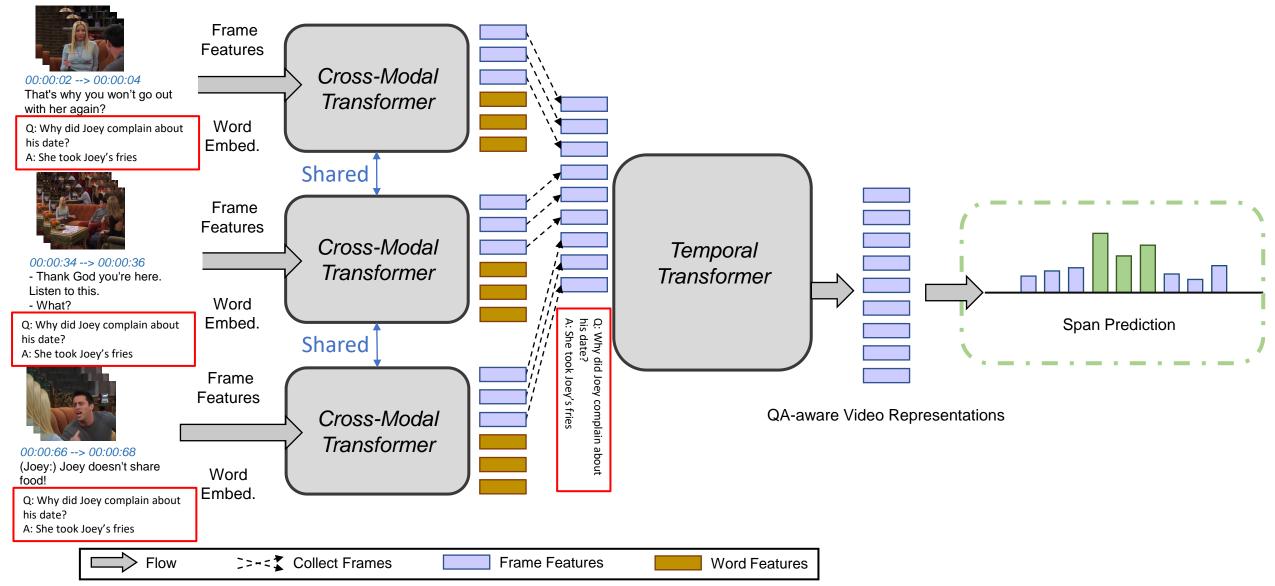




TVQA [Lei et al. EMNLP 2018]







Downstream Data Collection

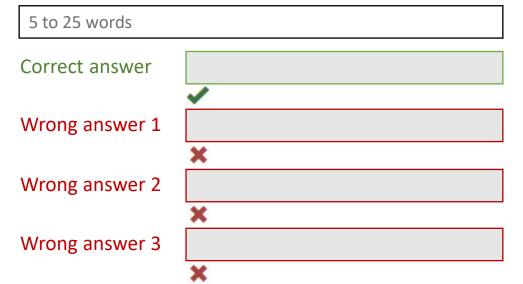
Please Drag the start/end handle below to cut a single-scene interval: The green span is the interval you cut.

Text-based Video Moment Retrieval

- Howto100M-R
 - 67K text queries are collected for 30K 60second video clips from Howto100M
- Instructions:
 - First, select a video segment
 - Then, write a caption describing the selected segment

Downstream Data Collection

Your Question:



Video Question Answering

- Howto100M-QA
 - QA collected for video segments annotated from video moment retrieval
 - On average, 2 questions per video segment
 - One correct answer and three wrong answers are written by the same annotator
 - Using adversarial matching [Zeller et al. CVPR 2019] to construct harder negative answers

Ablation Study

Pre-training Data		Pre-training Tasks	TVR		TVQA	Howto100M-R		Howto100M-QA		
			R@ 1	R@10	R@100	Acc.	R@1	R@10	R@100	Acc.
	1	MLM	2.92	10.66	17.52	71.25	2.06	9.08	14.45	76.42
	2	MLM + MNCE	3.13	10.92	17.52	71.99	2.15	9.27	14.98	76.95
TV	3	MLM + MNCE + FOM	3.09	10.27	17.43	72.54	2.36	9.85	15.97	77.12
	4	MLM + MNCE + FOM + VSM	4.44	14.69	22.82	72.75	2.78	10.41	18.77	77.54
	5	MLM + MNCE + FOM + VSM + MFFR	4.44	14.29	22.37	72.75	2.73	10.12	18.05	77.54
TV & Howto100M	6	MLM + MNCE + FOM + VSM	4.34	13.97	21.78	74.24	2.98	11.16	17.55	77.75

- 1. Best combination: MLM + MNCE + FOM + VSM
- 2. QA tasks benefit from FOM
- 3. Retrieval tasks benefit from VSM
- 4. Adding more data generally give better results

Ablation Study

- Comparison with two baseline models with/without pre-training
- F-TRM
 - A flat BERT-like encoder
 - Input is a single sequence by concatenating video frames and subtitle sentences

• H-TRM

- Replacing Cross-modal Transformer with RoBERTa to encode subtitle only
- Max-pooled subtitle sentence embeddings is added to temporally aligned frame embeddings

Pre-training	Model		TVQA		
		R@1	R@10	R@100	Acc.
	F-Trm	1.99	7.76	13.26	31.80
No ⁸	H-Trm	2.97	10.65	18.68	70.09
	Hero	2.98	10.65	18.25	70.65
Yes	H-Trm	3.12	11.08	18.42	70.03
168	Hero	4.44	14.69	22.82	72.75

- 1. Without pre-training, HERO and H-TRM outperforms F-TRM
 - Inherent temporal alignment between two modalities of videos is important
- 2. With pre-training, HERO outperforms H-TRM
 - Cross-modal interactions between visual frames and its local textual context is critical

Comparison with SOTA Models

Method	TVR			Howto100M-R			TVQA	Howto100M-QA
	R@1	R@10	R@100	R@1	R@10	R@100	Acc.	Acc.
XML (Lei et al., 2020)	2.70	8.93	15.34	2.06	8.96	13.27	-	-
STAGE (Lei et al., 2019)	-	-	-	-	-	-	70.50	-
HERO w/o pre-training ⁸	2.98	10.65	18.42	2.17	9.38	15.65	70.65	76.89
HERO w/ pre-training	4.34	13.97	21.78	2.98	11.16	17.55	74.24	77.75

- 1. Compared to task-specific SOTA models, HERO outperforms with/without pre-training
- 2. Pre-training greatly lift HERO's performance on downstream tasks
- 3. HERO achieves state-of-the-art results on all four downstream tasks

Thank You