Distilling Knowledge Learned in BERT for Text Generation

Yen-Chun Chen¹, Zhe Gan¹, Yu Cheng¹, Jingzhou Liu², Jingjing Liu¹

²Carnegie Mellon University

BERT is Dominating NLU

	G	LUE			The Stanfor
	Rank	Name	Model	Score	Rank
+	1	PING-AN Omni-Sinitic	ALBERT + DAAF + NAS	90.6	
	2	ERNIE Team - Baidu	ERNIE	90.4	
+	3	Alibaba DAMO NLP	StructBERT	90.3	1
	4	T5 Team - Google	T5	90.3	Apr 06, 2020
	5	Microsoft D365 AI & MSR AI & GATECH	MT-DNN-SMART	89.9	2 May 05, 2020
+	6	Zihang Dai	Funnel-Transformer (Ensemble B10-10-10H1024)	89.7	2
+	7	ELECTRA Team	ELECTRA-Large + Standard Tricks	89.4	Apr 05, 2020
+	8	Huawei Noah's Ark Lab	NEZHA-Large	88.7	0
+	9	Microsoft D365 AI & UMD	FreeLB-RoBERTa (ensemble)	88.4	3 May 04, 2020
					4

SQUAD2.0 The Stanford Question Answering Dataset						
Rank	Model	EM	F1			
	Human Performance Stanford University (Rajpurkar & Jia et al. '18)	86.831	89.452			
1 Apr 06, 2020	SA-Net on Albert (ensemble) QIANXIN	90.724	93.011			
2 May 05, 2020	SA-Net-V2 (ensemble) QIANXIN	90.679	92.948			
2 Apr 05, 2020	Retro-Reader (ensemble) Shanghai Jiao Tong University http://arxiv.org/abs/2001.09694v2	90.578	92.978			
3 May 04, 2020	ELECTRA+ALBERT+EntitySpanFocus (ensemble) SRCB_DML	90.442	92.839			
4 Mar 12, 2020	ALBERT + DAAF + Verifier (ensemble) PINGAN Omni-Sinitic	90.386	92.777			
5 Jan 10, 2020	Retro-Reader on ALBERT (ensemble) Shanghai Jiao Tong University http://arxiv.org/abs/2001.09694v2	90.115	92.580			

HellaSwag

	•					
Rank	Model	Overall accuracy	In-domain accuracy	Zero-shot accuracy	ActivityNet accuracy	WikiHow accuracy
	Human Performance University of Washington (Zellers et al. '19)	95. <mark>6</mark>	95.6	95.7	94.0	96.5
W arch 23, 2020	ALUM MSR https://github.com/namisan/mt- dnn	85.6	86.5	84.6	77.1	90.1
2 July 25, 2019	RoBERTa Facebook Al	85.2	87.3	83.1	74.6	90.9
3 February 7, 2020	G-DAug-inf Anonymous	83.7	85.6	81.8	73.0	89.6
4 January 19, 2020	HighOrderGN + RoBERTa USC MOWGL/INK Lab	82.2	84.3	80.2	71.5	88.1
5 July 25, 2019	Grover-Mega Univerity of Washington https://rowanzellers.com/grover	75.4	79.1	71.7	64.8	81.2
6 July 25, 2019	Grover-Large Univerity of Washington https://rowanzellers.com/grover	57.2	60.7	53.6	53.3	59.2

Wang et al., "GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding", EMNLP 2018 Rajpurkar et al., "Know What You Don't Know: Unanswerable Questions for SQuAD", ACL 2018 Zellers et al., "HellaSwag: Can a Machine Really Finish Your Sentence?", ACL 2019

What about Text Generation?

- Machine Translation
 - Bing Microsoft Translator, Google Translate
- Automatic Text Summarization

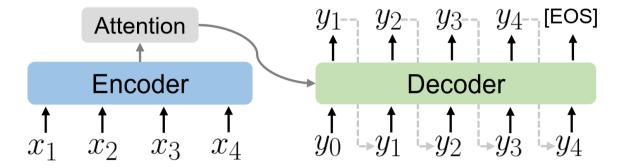
Image Captioning / Alt Text

Microsoft

SOTA: Sequence-to-Sequence (Seq2Seq)

- Predict one word at a time, from left to right
- Conditional Language Model

$$\mathcal{L}_{xe}(\theta) = -\log P_{\theta}(Y|X)$$
(1)
= $-\sum_{t=1}^{N} \log P_{\theta}(y_t|y_{1:t-1}, X),$



Sutskever et al., "Sequence to Sequence Learning with Neural Networks", NeurIPS 2014

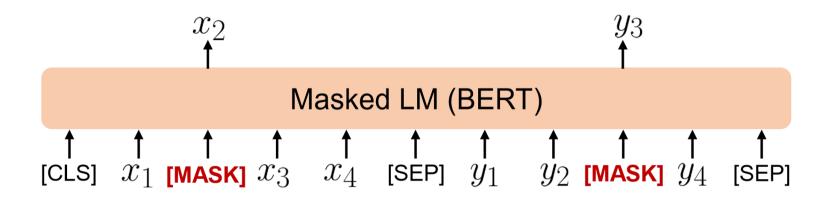
Why is Seq2Seq Insufficient?

- Left-to-right only: context on the right is not utilized
- BERT is bidirectional and encodes rich contextual information from large-scale corpus
- Can we apply BERT to Text Generation?

BERT: Masked Language Modeling (MLM)

Predict 15% of masked tokens at the same time

 $P(x_1^m, \dots, x_i^m, y_1^m, \dots, y_j^m | X^u, Y^u),$ (2)



- Why not apply BERT to text generation directly?
 - Can't go conditional or sequential during inference

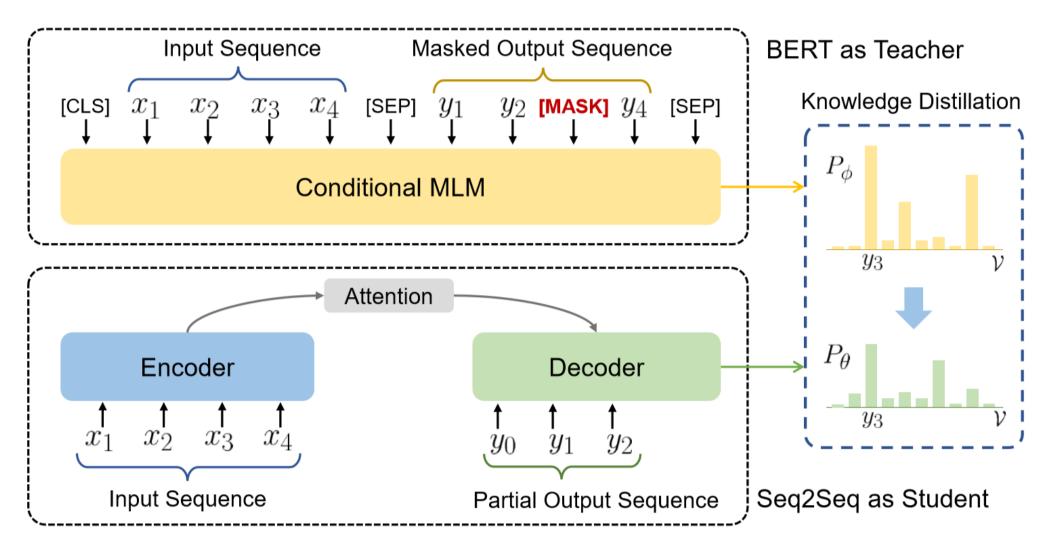
Devlin et al., "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding", NAACL 2019

Our Proposal: Conditional MLM (C-MLM)

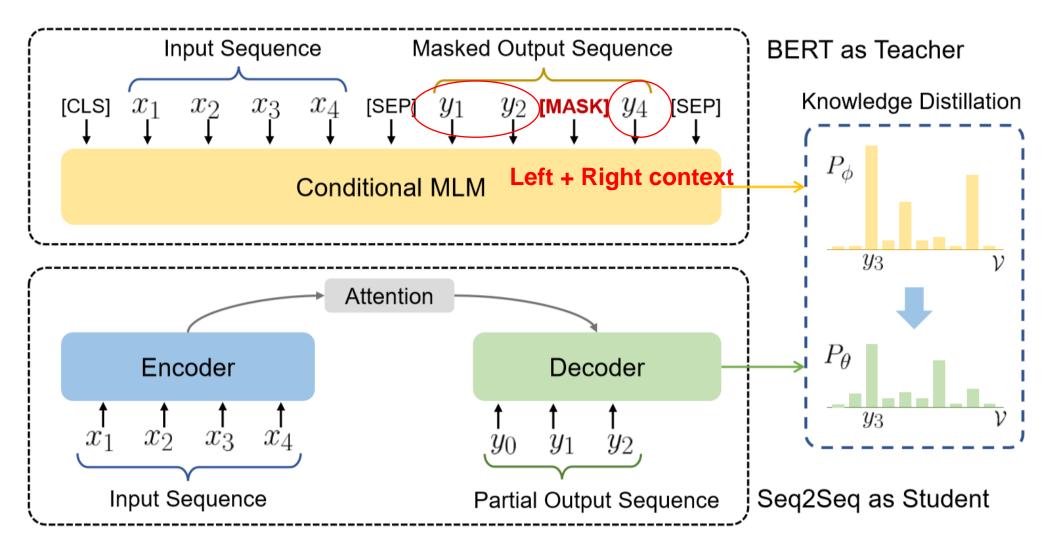
We propose an MLM variant for Seq2Seq generation

 Now it's conditional, but how to make it sequential for text generation?

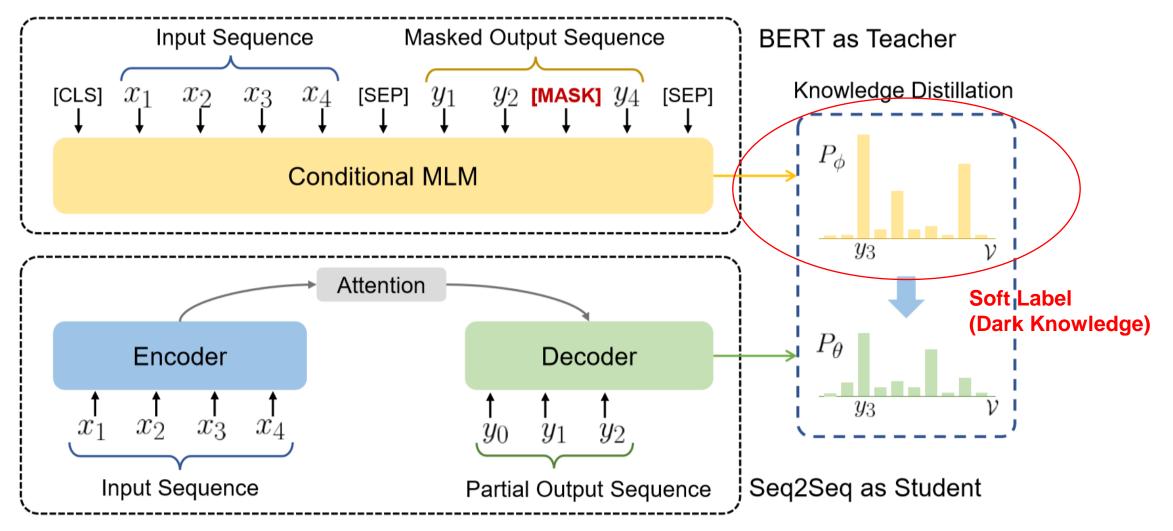
Solution: Seq2Seq Enhanced by C-MLM



Looking into the Future (Right Context)



Dark Knowledge (Soft Label)



Hinton et al., "Distilling the Knowledge in a Neural Network", 2015

Experiments

- Text Generation Tasks
 - Machine Translation (MT)
 - Small (IWSLT, <200k): English to Vietnamese (En-Vi), German to English (De-En)
 - Medium (WMT, ~4.5M): English to German (En-De)
 - Abstractive Summarization
 - Gigaword summarization (3.8M): Generate headlines for news articles
- Evaluation Metrics
 - BLEU: geometric mean of *N*-gram precision (*N*=1, 2, 3, 4)
 - ROUGE: F-1 scores of *N*-gram matching (with longest common subsequence)

Rush et al., "A Neural Attention Model for Abstractive Sentence Summarization", EMNLP 2015 Papineni et al., "BLEU: A Method for Automatic Evaluation of Machine Translation", ACL 2002 Lin, "ROUGE: A Package for Automatic Evaluation of Summaries", 2004

Results on MT Task

- Our approach is *model-agnostic*
 - Generalizable to different Seq2Seq models (e.g., RNN, Transformer)
- Our approach can *scale* to larger datasets

En-Vi Models	tst2012	tst2013	
Our Implement	tations		
RNN	23.37	26.80	
+ BERT teacher	25.14	27.59	
Transformer (base)	27.03	30.76	
+ BERT teacher	27.85	31.51	

En-De Models	NT2013	NT2014
Our Implementations		
Transformer (base)	25.95	26.94
+ BERT teacher	26.22	27.53

Vaswani et al., "Attention Is All You Need", NeurIPS 2017

Results on Summarization Task

- Our approach is *generalizable* to different text generation tasks
- Our generic approach is *comparable* to task-specific SOTA customized for summarization

GW Models	R-1	R-2	R-L
D	ev		
Transformer (base)	46.64	24.37	43.17
+ BERT teacher	47.35	25.11	44.04
Test-Dev			
Transformer (base)	46.84	24.80	43.58
+ BERT teacher	47.90	25.75	44.53

GW Models	R-1	R-2	R-L
Seq2Seq [†]	36.40	17.77	33.71
CGU [‡]	36.3	18.0	33.8
$\operatorname{FTSum}_{g}^{\star}$	37.27	17.65	34.24
$E2T_{cnn}$	37.04	16.66	34.93
Re ³ Sum [●]	37.04	19.03	34.46
Trm + BERT teacher	37.57	18.59	34.82

State-of-the-art on Two MT Tasks

En-Vi Models	tst2012	tst2013	
Our Implement	tations		
RNN	23.37	26.80	
+ BERT teacher	25.14	27.59	
Transformer (base)	27.03	30.76	
+ BERT teacher	27.85	31.51	
Other Reported Results			
RNN [†]	-	26.1	
Seq2Seq-OT*	24.5	26.9	
ELMo [◊]	-	29.3	
CVT [◊]	-	29.6	

De-En Models	dev	test	
Our Implementation	Our Implementations		
Transformer (base)	35.27	34.09	
+ BERT teacher	36.93	35.63	
Other Reported Results			
$ConvS2S + MRT^{\ddagger}$	33.91	32.85	
Transformer (big) [◊]	-	34.4 [†]	
Lightweight Conv [◊]	_	34.8†	
Dyn. Convolution ^{\$}	-	35.2†	

*SOTA at the time of submission

Ablation Study

- Bidirectional nature?
 - BERT_{I2r}: train teacher with left-to-right LM objective
- Extra parameter?
 - BERT_{sm}: train smaller teacher (6-layer BERT)

Methods	De-En	En-Vi
	(dev)	(tst2012)
Transformer (base)	35.27	27.03
Trm + BERT $_{l2r}$	35.20	26.99
$Trm + BERT_{sm}$	36.32	27.68
Trm + BERT	36.93	27.85

• BERT pre-training is still essential

• C-MLM takes both left and right context

• Look-ahead generation / plan for future (implicit)

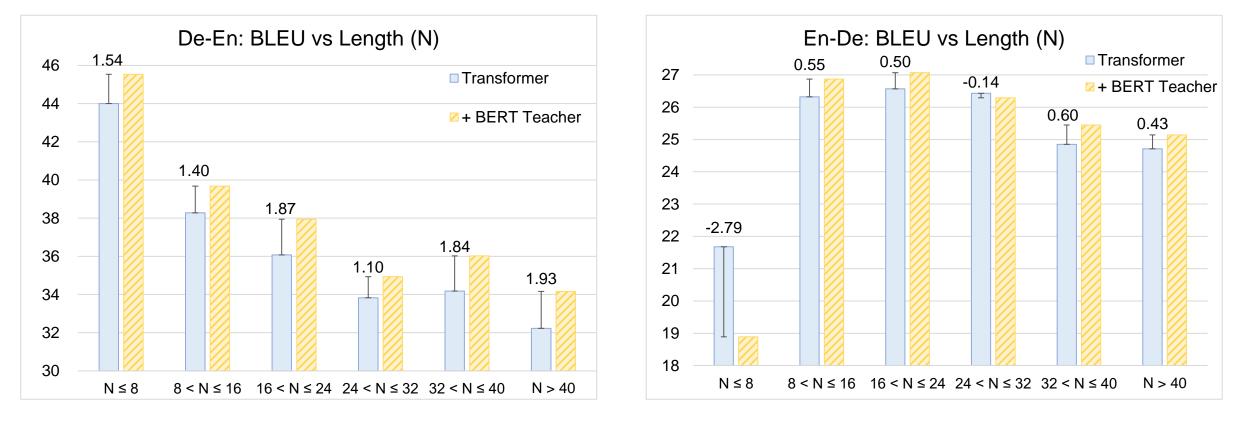
- C-MLM takes both left and right context
- Soft distribution has more information
 - "Dark knowledge" contains useful learning signal

- C-MLM takes both left and right context
- Soft distribution has more information
- No-explicit parameter sharing / feature extraction
 - Model agnostic
 - Same inference speed / model size

- C-MLM takes both left and right context
- Soft distribution has more information
- No-explicit parameter sharing / feature extraction
- NOT model compression
 - C-MLM / BERT cannot generate, but can provide better training target

Analysis

Our approach achieves higher performance gain on longer sequences



Examples (MT)

Reference	my mother says that i started reading at the age of two, although i think four is probably close to the truth.
Transformer	my mother says that i started reading with two years , but i think that four of them probably correspond to the truth (39.6)
Ours	my mother says that i started reading at the age of two, but i think four is more likely to be the truth. (65.2)
Reference	we already have the data showing that it reduces the duration of your flu by a few hours.
Transformer	we 've already got the data showing that it 's going to crash the duration of your flu by a few hours . (56.6)
Ours	we already have the data showing that it reduces the duration of your flu by a few hours . (100.0)
Reference	we now know that at gombe alone, there are nine different ways in which chimpanzees use different objects for different purposes.
Transformer	we know today that alone in gombe, there are nine different ways that chimpanzees use different objects in different ways. (35.8)
Ours	we now know that in gombe alone, there are nine different ways that chimpanzees use different objects for different purposes. (71.5)

Summary

- Use Knowledge Distillation to pass on bidirectional contextual information from pre-trained C-MLM (Teacher) to Seq2Seq model (Student) for text generation
 - Bidirectional: C-MLM takes both left and right context
 - Model-agnostic: No-explicit sharing / feature extraction
 - Generalizable to different text generation tasks
- State-of-the-art on two machine translation tasks

Thank You!