

Adversarial Domain Adaptation for Machine Reading Comprehension

Huazheng Wang¹, Zhe Gan², Xiaodong Liu³, Jingjing Liu², Jianfeng Gao³, Hongning Wang¹

Motivation & Contribution Motivation Recent success in MRC relies on large-scale annotated in-domain data (e.g., SQuAD) Directly adapting models from source domain to low-resource target domain performs poorly due to domain shift Contribution Unsupervised Domain Adaptation by generating pseudo data on target domain and learning domain*invariant* representations through adversarial learning T-SNE plot of encoded feature representations هه مورد هر Without domain adaptation With domain adaptation

Training Algorithm

Algorithm 1 AdaMRC training procedure.

- 1: Input: source domain labeled data S = $\{p^s, q^s, a^s\}$, target domain unlabeled data $T = \{p^t\}$
- 2: Train the MRC model $\theta^s = (\theta_e^s, \theta_d^s)$ on source domain S;
- 3: Train the QG model θ_{QG} on source domain S;
- 4: Generate $T_{gen} = \{p^t, q^t, a^t\}$ using the QG model;
- 5: Initialize $\theta = (\theta_e, \theta_d, \theta_c)$ with θ^s ;
- 6: for epoch $\leftarrow 1$ to #epochs do
- Optimize θ on $S \cup T_{gen}$. Each minibatch is composed with k_s samples from S and k_t samples from T_{qen} ;
- 8: **end for**
- 9: **Output:** Model with the best performance on the target development set θ^* .

¹University of Virginia

²Microsoft Dynamics 365 AI Research

Experimental Results

Dataset	Domain
SQuAD (v1.1)	Wiki
NewsQA	News
MS MARCO (v1)	Web

- Main results are based on Stochastic Answer Network (SAN)
- AdaMRC consistently improves performance over baselines
- Direct data augmentation and finetuning (SynNet) hurts performance
- Question generation is effective (margin with "AdaMRC with GT questions" is relatively small)
- Generalizable to other datasets and other MRC models with consistent performance gain

Method

³Microsoft Research

Method	EM/F1
SQuAD → N	lewsQA
SAN	36.68/52.79
SynNet + SAN	35.19/49.61
AdaMRC	38.46/54.20
AdaMRC with GT questions	39.37/54.63
NewsQA →	SQuAD
SAN	56.83/68.62
SynNet + SAN	50.34/62.42
AdaMRC	58.20/69.75
AdaMRC with GT questions	58.82/70.14
$SQuAD \longrightarrow MS MARCO$	(BLEU-1/ROUGE-L)
SAN	13.06/25.80
SynNet + SAN	12.52/25.47
AdaMRC	14.09/26.09
AdaMRC with GT questions	15.59/26.40
MS MARCO —	→ SQuAD
SAN	27.06/40.07
SynNet + SAN	23.67/36.79
AdaMRC	27.92/40.69
AdaMRC with GT questions	27.79/41.47

JNIVERSITY